Khovanov Homology

Two key motivating ideas are involved in finding the Khovanov invariant. First
of all, one would like to categorify a link polynomial such as (K). There are many
meanings to the term categorify, but here the quest is to find a way to express the link
polynomial as a graded Euler characteristic (K) = x,(H(K)) for some homology
theory associated with (K).
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Exploration: Examine the Bracket Polynomial
for Clues.

Let ¢(K) = number of crossings on link K.
Form A (%) <K> and replace A by -q-I :

Then the skein relation for <K> will
be replaced by:
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Use enhanced states by labeling each loop with
+| or -I.
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Enhanced States
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For reasons that will soon become apparent, we
let -1 be denoted by X and +1| be denoted by |.




(K) = Z(_l)nB(S)qj(S)

S

J(s) = np(s) + A(s)

(K) =) (=1)'¢’dim(C")
v,]
nB(s) = number of B-smoothings in the state s.

A($) = number of +1 loops minus number of -1 loops.

C 'l = module generated by enhanced states
with i =n gand j as above.




Wanted: differential acting in the form
0:C" — C'T1Y

For j to be constant as i increases by |, we need

A(s) to decrease by |I.







The differential should increase the homological
grading i by | and leave fixed the quantum grading j.

Then we would have

Zq Z )'dim(C™) quC'y
X(H(C*)) = x(C*7)
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d(s) = Z 0-(s)

The boundary is a sum of partial differentials
corresponding to resmoothings on the states.




Proposition. The partial differentials O (s) are uniquely determined by the condition
that j(s’) = j(s) for all s’ involved in the action of the partial differential on the en-
hanced state s. This unique form of the partial differential can be described by the fol-
lowing structures of multiplication and comultiplication on the algebra A = k[X]/(X?)
where k = Z /27 for mod-2 coefficients, or k = Z for integral coefficients.

1. The element 1 is a multiplicative unit and X? = 0.

2 A10)=19X+X®land A(X) =X ® X.
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Bracket states
form a
category that
assembles
itself into a chain
complex.

Levels in the chain
complex are
direct sums of modules
corresponding to
states with a constant
number of B
smoothings.




Note that signs in the boundary for an
element in cube category follow the
rule (-1)# where
# = number of A’s preceding that A to
be smoothed.

Thus [AAA] > [BAA]-[ABA]+[AAB]

and [BAA] » [BBA]-[BAB]
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Checking Order Compatibility
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Evaluations at
successive levels.
Identity from topology.

Aa) = za1(X) a2
Ye(al) @ a2
m(Ze(al) ®a2) =a

Using special case of a=1, we obtain:
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We have arrived at the Frobenius algebra, but there
is still work to be done to see the invariance under
ambient isotopy of knots and links.




Categorification and the Morse Dream
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Cubism Again
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Categorification and the Morse Dream

(flattenlng a higher category)
(A—>B) = A—B (A—>B) = Alh>8 —B(A-E)
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Dror’s Canopoly

An abstract
categorical
analog of a chain
complex.
That can be taken
up to
chain homotopy.
The maps are
additive
combinations of
surface
cobordisms.
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We examine this question as
though we had not seen the
Frobenius algebra.







N _—

/’ /" a\

0 1
\A/:D’( 912 3, B®<

HI$ >BOA< \/Hg
/N
G1\L F1 F2

| T ——

Figure 11: Complexes for Second Reidemeister Move
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Figure 12: Cobordism Compositions for Second Reidemeister Move
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Figure 13: Preparation for Homotopy for Second Reidemeister Move
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Figure 14: Homotopy for Second Reidemeister Move
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The Four-Tube Relation

(4Tu Relation)

Four surface locations 1,2,3,4.
(i j) denotes a new surface

—
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1
b arrangement, with a tube joining
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i and j.

(12) + (34) = (14) + (23)
or, equivalently

(12) - (23) + (34) - (14) = 0.

A

Figure 15: Four-Tube Relation From Homotopy
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Schematic Four-Tube Relation
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4 3 From Four Tube to the Tube Relation
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The Tube Relation implies the

Four Tube Relation.
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Coproduct via the Tube-Relation




From 4Tu to Frobenius Algebra
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Figure 20: Coproducts of 1 and x Via Tube-Cutting Relation







Algebra from 4Tu - Guaranteed to
Produce Link Homology




Lee’s Algebra

=1,

Al)=1®z+r®1,
Alz)=z®zrz+1®1,
e(z) =1,

e(1) =0.

This gives a link homology theory that is distinct from Khovanov homology. In this theory, the
quantum grading j is not preseved, but we do have that

J(0(@)) = j(a)

for each chain « in the complex. This means that one can use j to filter the chain complex for
the Lee homology. The result is a spectral sequence that starts from Khovanov homology and
converges to Lee homology.
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Lee homology is simple. One has that the dimension of the Lee homology is equal to 2¢0m?(L)
where comp(L) denotes the number of components of the link L. Up to homotopy, Lee’s ho-
mology has a vanishing differential, and the complex behaves well under link concondance. In
his paper [4] Dror BarNatan remarks ”In a beautiful article Eun Soo Lee introduced a second
differential on the Khovanov complex of a knot (or link) and showed that the resulting (double)
complex has non-interesting homology. This is a very interesting result.” Rasmussen [49] uses
Lee’s result to define invariants of links that give lower bounds for the four-ball genus, and deter-
mine it for torus knots. This gives an (elementary) proof of a conjecture of Milnor that had been
previously shown using gauge theory by Kronheimer and Mrowka [29].

Rasmussen’s result uses the Lee spectral sequence. We have the quantum (7) grading for a di-
agram K and the fact that for Lee’s algebra j(9(s)) > j(s). Rasmussen uses a normalized version
of this grading denoted by g(s). Then one makes a filtration F*C*(K) = {v € C*(K)|g(v) > k}
and given a € Lee*(K) define

S(a) := maz{g(v)|[v] = a}
Smin(K) := min{S(a)|a € Lee*(K),a # 0}
Smaz(K) := maz{S(a)|a € Lee*(K),a # 0}

and
S(K) := (1/2)(Smin(K) + Smaz(K)).
This last average of s,,;, and s,,,, 1s the Rasmussen invariant.







We now enter the following sequence of facts:
1. s(K) € Z.
2. s(K) is additive under connected sum.

3. If K* denotes the mirror image of the diagram K, then

s(K*) = —s(K).

4. If K is a positive knot diagram (all positive crossings), then
s(K)=—-r+n+1

where r denotes the number of loops in the canonical oriented smoothing (this is the same
as the number of Seifert circuits in the diagram K') and n denotes the number of crossings
in K.

5. For a torus knot K, of type (a, b), s(K,p) = (@ —1)(b —1).
6. |s(K)| < 2¢*(K) where g*(K) is the least genus spanning surface for K in the four ball.
7. g*(Kap) = (a— 1)(b— 1)/2. This is Milnor’s conjecture.

[his completes a very skeletal sketch of the construction and use of Rasmussen’s invariant.
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Facts: s 100 (K) = s4(K) + 2

s(K) = sin(K) + |
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A-State: s(K) = | - (#loops) + (# crossings) =

2genus(Seifert(K))

For positive knot all loops labelled x.
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For Virtual Knots we need to add a single cycle
arrow. More on this next lecture.
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