
Khovanov Homology[16], and Bar-Natan’s emphasis on tangle cobordisms [2]. We use similar considera-

tions in our paper [10].

Two key motivating ideas are involved in finding the Khovanov invariant. First

of all, one would like to categorify a link polynomial such as ⟨K⟩. There are many
meanings to the term categorify, but here the quest is to find a way to express the link

polynomial as a graded Euler characteristic ⟨K⟩ = χq⟨H(K)⟩ for some homology
theory associated with ⟨K⟩.

The bracket polynomial [7] model for the Jones polynomial [4, 5, 6, 17] is usually

described by the expansion

⟨ ⟩ = A⟨ ⟩ + A−1⟨ ⟩ (4)

and we have

⟨K ⃝⟩ = (−A2 − A−2)⟨K⟩ (5)

⟨ ⟩ = (−A3)⟨ ⟩ (6)

⟨ ⟩ = (−A−3)⟨ ⟩ (7)

Letting c(K) denote the number of crossings in the diagramK, if we replace ⟨K⟩
by A−c(K)⟨K⟩, and then replace A by −q−1, the bracket will be rewritten in the fol-
lowing form:

⟨ ⟩ = ⟨ ⟩ − q⟨ ⟩ (8)

with ⟨⃝⟩ = (q+q−1). It is useful to use this form of the bracket state sum for the sake
of the grading in the Khovanov homology (to be described below). We shall continue

to refer to the smoothings labeled q (or A−1 in the original bracket formulation) as

B-smoothings. We should further note that we use the well-known convention of en-
hanced states where an enhanced state has a label of 1 or X on each of its component

loops. We then regard the value of the loop q + q−1 as the sum of the value of a circle

labeled with a 1 (the value is q) added to the value of a circle labeled with an X (the

value is q−1).We could have chosen the more neutral labels of +1 and −1 so that

q+1 ⇐⇒ +1 ⇐⇒ 1

and

q−1 ⇐⇒ −1 ⇐⇒ X,

but, since an algebra involving 1 and X naturally appears later, we take this form of

labeling from the beginning.
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Cubism

The bracket states form a 
category. How can we 

obtain topological 
information from this 

category?



Let c(K) = number of crossings on link K.

Form A          <K> and replace A by -q    .
-c(K) -1

Then the skein relation for <K> will 
be replaced by:
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with a 1 (the value is q) added to the value of a circle labeled with anX (the value is q−1).We could have
chosen the more neutral labels of +1 and −1 so that

q+1 ⇐⇒ +1 ⇐⇒ 1

and

q−1 ⇐⇒ −1 ⇐⇒ X,

but, since an algebra involving 1 and X naturally appears later, we take this form of labeling from the

beginning.

To see how the Khovanov grading arises, consider the form of the expansion of this version of the

bracket polynonmial in enhanced states. We have the formula as a sum over enhanced states s :

⟨K⟩ =
∑

s

(−1)nB(s)qj(s)

where nB(s) is the number of B-type smoothings in s, λ(s) is the number of loops in s labeled 1 minus
the number of loops labeled X, and j(s) = nB(s) + λ(s). This can be rewritten in the following form:

⟨K⟩ =
∑

i ,j

(−1)iqjdim(Cij)

where we define Cij to be the linear span (over k = Z/2Z as we will work with mod 2 coefficients) of
the set of enhanced states with nB(s) = i and j(s) = j. Then the number of such states is the dimension
dim(Cij).

We would like to have a bigraded complex composed of the Cij with a differential

∂ : Cij −→ Ci+1 j .

The differential should increase the homological grading i by 1 and preserve the quantum grading j. Then
we could write

⟨K⟩ =
∑

j

qj
∑

i

(−1)idim(Cij) =
∑

j

qjχ(C• j),

where χ(C• j) is the Euler characteristic of the subcomplex C• j for a fixed value of j.

This formula would constitute a categorification of the bracket polynomial. Below, we shall see how the

original Khovanov differential ∂ is uniquely determined by the restriction that j(∂s) = j(s) for each
enhanced state s. Since j is preserved by the differential, these subcomplexes C• j have their own Euler

characteristics and homology. We have

χ(H(C• j)) = χ(C• j)

where H(C• j) denotes the homology of the complex C• j . We can write

⟨K⟩ =
∑

j

qjχ(H(C• j)).

The last formula expresses the bracket polynomial as a graded Euler characteristic of a homology theory

associated with the enhanced states of the bracket state summation. This is the categorification of the

bracket polynomial. Khovanov proves that this homology theory is an invariant of knots and links (via the

Reidemeister moves of Figure 1), creating a new and stronger invariant than the original Jones polynomial.
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Enhanced States

For reasons that will soon become apparent, we 
let -1 be denoted by X and +1 be denoted by 1.
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n  (s) = number of B-smoothings in the state s.B
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= number of +1 loops minus number of -1 loops.

C ij = module generated by enhanced states 
with i =n   and j as above.B
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We will construct the differential in this complex first for mod-2 coefficients. The differential is based
on regarding two states as adjacent if one differs from the other by a single smoothing at some site. Thus

if (s, τ) denotes a pair consisting in an enhanced state s and site τ of that state with τ of type A, then
we consider all enhanced states s′ obtained from s by smoothing at τ and relabeling only those loops that
are affected by the resmoothing. Call this set of enhanced states S′[s, τ ]. Then we shall define the partial
differential ∂τ (s) as a sum over certain elements in S′[s, τ ], and the differential by the formula

∂(s) =
∑

τ

∂τ (s)

with the sum over all type A sites τ in s. It then remains to see what are the possibilities for ∂τ (s) so that
j(s) is preserved.

Note that if s′ ∈ S′[s, τ ], then nB(s′) = nB(s) + 1. Thus

j(s′) = nB(s′) + λ(s′) = 1 + nB(s) + λ(s′).

From this we conclude that j(s) = j(s′) if and only if λ(s′) = λ(s) − 1. Recall that

λ(s) = [s : +] − [s : −]

where [s : +] is the number of loops in s labeled +1, [s : −] is the number of loops labeled −1 (same as
labeled with X) and j(s) = nB(s) + λ(s).

Proposition. The partial differentials ∂τ (s) are uniquely determined by the condition that j(s′) = j(s)
for all s′ involved in the action of the partial differential on the enhanced state s. This unique form of the
partial differential can be described by the following structures of multiplication and comultiplication on

the algebra A = k[X]/(X2) where k = Z/2Z for mod-2 coefficients, or k = Z for integral coefficients.

1. The element 1 is a multiplicative unit andX2 = 0.

2. ∆(1) = 1 ⊗ X + X ⊗ 1 and ∆(X) = X ⊗ X.

These rules describe the local relabeling process for loops in a state. Multiplication corresponds to the

case where two loops merge to a single loop, while comultiplication corresponds to the case where one

loop bifurcates into two loops.

(The proof is omitted.)

Partial differentials are defined on each enhanced state s and a site τ of typeA in that state. We consider
states obtained from the given state by smoothing the given site τ . The result of smoothing τ is to produce
a new state s′ with one more site of type B than s. Forming s′ from s we either amalgamate two loops to
a single loop at τ , or we divide a loop at τ into two distinct loops. In the case of amalgamation, the new
state s acquires the label on the amalgamated circle that is the product of the labels on the two circles that
are its ancestors in s. This case of the partial differential is described by the multiplication in the algebra.
If one circle becomes two circles, then we apply the coproduct. Thus if the circle is labeled X , then the
resultant two circles are each labeledX corresponding to∆(X) = X⊗X . If the orginal circle is labeled 1
then we take the partial boundary to be a sum of two enhanced states with labels 1 andX in one case, and

labels X and 1 in the other case, on the respective circles. This corresponds to ∆(1) = 1 ⊗ X + X ⊗ 1.
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The boundary is a sum of partial differentials
corresponding to resmoothings on the states.

that the existence of a bigraded complex of this type allows us to further
write:

⟨K⟩ =
X

j

qj
X

i

(−1)idim(Cij) =
X

j

qjχ(C• j),

where χ(C• j) is the Euler characteristic of the subcomplex C• j for a fixed
value of j. Since j is preserved by the differential, these subcomplexes have
their own Euler characteristics and homology. We can write

⟨K⟩ =
X

j

qjχ(H(C• j)),

where H(C• j) denotes the homology of this complex. Thus our last for-
mula expresses the bracket polynomial as a graded Euler characteristic of a
homology theory associated with the enhanced states of the bracket state
summation. This is the categorification of the bracket polynomial. Kho-
vanov proves that this homology theory is an invariant of knots and links,
creating a new and stronger invariant than the original Jones polynomial.

We explain the differential in this complex for mod-2 coefficients and
leave it to the reader to see the references for the rest. The differential
is defined via the algebra A = k[X]/(x2) so that X2 = 0 with coproduct
∆ : A −→ A⊗A defined by ∆(X) = X ⊗ X and ∆(1) = 1 ⊗ X + X ⊗ 1.
Partial differentials (which are defined on an enhanced state with a chosen
site, whereas the differential is a sum of these mappings) are defined on
each enhanced state s and a site κ of type A in that state. We consider
states obtained from the given state by smoothing the given site κ. The
result of smoothing κ is to produce a new state s′ with one more site of
type B than s. Forming s′ from s we either amalgamate two loops to a
single loop at κ, or we divide a loop at κ into two distinct loops. In the case
of amalgamation, the new state s acquires the label on the amalgamated
circle that is the product of the labels on the two circles that are its
ancestors in s. That is, m(1⊗X) = X and m(X⊗X) = 0. Thus this case
of the partial differential is described by the multiplication in the algebra.
If one circle becomes two circles, then we apply the coproduct. Thus if
the circle is labelled X, then the resultant two circles are each labelled X
corresponding to ∆(X) = X ⊗ X. If the orginal circle is labelled 1 then
we take the partial boundary to be a sum of two enhanced states with
labels 1 and X in one case, and labels X and 1 in the other case on the
respective circles. This corresponds to ∆(1) = 1 ⊗ X + X ⊗ 1. Modulo
two, the differential of an enhanced state is the sum, over all sites of type
A in the state, of the partial differential at these sites. It is not hard
to verify directly that the square of the differential mapping is zero and
that it behaves as advertised, keeping j(s) constant. There is more to say
about the nature of this construction with respect to Frobenius algebras
and tangle cobordisms. See [Kh, BN, BN2]

Here we consider bigraded complexes Cij with height (homological
grading) i and quantum grading j. In the unnormalized Khovanov complex
[[K]] the index i is the number of B-smoothings of the bracket, and for
every enhanced state, the index j is equal to the number of components
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labeled −1 (same as labeled withX) and j(s) = nB(s) + λ(s).
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hanced state s. This unique form of the partial differential can be described by the fol-
lowing structures of multiplication and comultiplication on the algebra A = k[X ]/(X2)
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Figure 2: SaddlePoints and State Smoothings

the relationships between Frobenius algebras and the surface cobordism category. The

proof of invariance of Khovanov homology with respect to the Reidemeister moves

(respecting grading changes) will not be given here. See [12, 1, 2]. It is remarkable

that this version of Khovanov homology is uniquely specified by natural ideas about

adjacency of states in the bracket polynomial.

Remark on Integral Differentials. Choose an ordering for the crossings in the link

diagram K and denote them by 1, 2, · · ·n. Let s be any enhanced state of K and let

∂i(s) denote the chain obtained from s by applying a partial boundary at the i-th site
of s. If the i-th site is a smoothing of type A−1, then ∂i(s) = 0. If the i-th site is

Δm

F G H

Figure 3: Surface Cobordisms
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Bracket states 
form a 

category that 
assembles

itself into a chain 
complex.

C

C

C

C

0

1

2

3

Levels in the chain 
complex are

direct sums of modules 
corresponding to 

states with a constant 
number of B 
smoothings.



Note that signs in the boundary for an 
element in cube category follow the 

rule (-1)# where 
# = number of A’s preceding that A to 

be smoothed.

Thus [AAA] [BAA]-[ABA]+[AAB]

and [BAA] [BBA]-[BAB]





Enhanced States
Plus 

Boundary 
Requirement 

Yields 
Frobenius Algebra.



Checking Order Compatibility















We have arrived at the Frobenius algebra, but there
is still work to be done to see the invariance under

ambient isotopy of knots and links.



Categorification and the Morse Dream







Cubism Again



Categorification and the Morse Dream

(flattening a higher category)







Dror’s Canopoly

An abstract 
categorical

analog of a chain 
complex.

That can be taken 
up to 

chain homotopy.
The maps are 

additive 
combinations of 

surface 
cobordisms.



We examine this question as 
though we had not seen the 

Frobenius algebra.

















Schematic Four-Tube Relation



The dot can be
taken to represent
an algebra element 

x.





Coproduct via the Tube-Relation



From 4Tu to Frobenius Algebra







Algebra from 4Tu - Guaranteed to 
Produce Link Homology



Lee’s Algebra













s(K) = s     (K) + 1min 

s      (K) = s     (K) + 2min max Facts:

A-State: s(K) = 1 - (#loops) + (# crossings) = 
2genus(Seifert(K))

For positive knot all loops labelled x.







For Virtual Knots we need to add a single cycle 
arrow. More on this next lecture.


