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The Olympiad Committee gratefully acknowledges the help and support of the 
many individuals and organizations that made the Third Olympiad possible. The 
problems were prepared by a committee consisting of Murray Klamkin, C. C. 
Rousseau and P. A. Paige. The Annual High School Mathematics Examination 
Committee, consisting of R. Artino, A. Gaglione, and N. Shilkret, provided the data 
needed for selecting and inviting the participants. The papers were graded by Michael 
Aissen, John Bender, Richard Bumby, Harry Gonshor, Sol Leader, Ben Mucken- 
houpt, Barbara Osofsky and Hyman Zimmerberg, all on the staff of the Mathe- 
matics Department at Rutgers University. The top thirty papers were regraded by 
Cecil C. Rousseau at Memphis State University. 

This year, the U.S.A. was invited to send a team of eight students to Erfurt, in 
the German Democratic Republic, to participate in the Sixteenth International 
Mathematical Olympiad. The invitation was accepted and our team was there on 
July 8 and 9. Thanks are due to the Spencer Foundation for the grant which made 
it possible for the team to travel to Europe and back. 

The Fourth U.S.A. Mathematical Olympiad will take place on Tuesday, May 6, 
1975. 

DEPARTMENT OF MATHEMATICS, RUTGERS-THE STATE UNIVERSITY, NEWARK, NJ 07102. 

INFINITE FAMILIES OF NONTRIVIAL TRIVALENT GRAPHS 
WHICH ARE NOT TAIT COLORABLE 

RUFUS ISAACS 

1. Introduction. Among extant edge coloring problems, the 3-coloring of trivalent 
graphs is prominent because of its relation to the classic 4-color conjecture on maps. 
The story is splendidly told by Saaty in [6], but we shall follow a self-contained 
route for the unitiated by supplying the needed definitions and basic results in 
Part 2. Well-known theorems there are followed by terse, suggested proofs in 
parentheses. 

To prove the classic 4-color conjecture, it suffices to solve these two problems 
(See Section 2.1, 1 and II): 

(1) To find all uncolorable trivalent graphs or characterize them in some rea- 
sonably constructive way. 

(2) To prove all such graphs are not planar. 
Problem (2) seems tractable enough as indicated by Section 5.2. Thus (1) can be 

viewed as a version of the 4-color conjecture unencumbered by the topology of the 
plane. But aside from this application, (1) is a worthy mathematical problem in itself. 
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The earliest uncolorable 3-graph, the Petersen graph [1], dates from 1891. It is 
given and discussed here in Section 2.2. For it, V = number of vertices = 10 which 
is shown to be as small as possible in Section 5.3. 

Between then until the present paper, to my knowledge, only three other non- 
trivial uncolorable 3-graphs have been found. ("Nontrivial" is an essential, but 
somewhat elusive, qualifier. Our usage of it is explained and defended in Section 5.1.) 
Their discoverers, dates, V and references are 

Blanusa 1946 18 [2] 
Descartes 1948 210 [3] 
Szekeres 1973 50 [4] 

and the graphs themselves will appear in Section 3.1. 
This state of affairs merits two antithetical comments: 

1. It is credible. Uncolorable 3-graphs are extremely rare in the class of all 
such. The search for the uncolorable I found a fascinating pastime for spare moments 
over many months. One who so indulges - and I recommend it as a pleasant 
diversion for any mathematician - will be vividly impressed with the maddening 
difficulty of finding a 3-graph he cannot color. 

2. It is incredible. The main result of this paper is the discovery of an opulent 
infinite set of uncolorable 3-graphs (Part 3) of which the preceding three examples 
are members without any special conspicuity. I call it the BDS class after the three 
authors without whose work this class could not have come into being. In this light 
it is hard to believe that the three stood alone so long and with interludes of about 
50 and 30 years. 

I am certainly no authority on graph theory, but Professor W. T. Tutte certainly 
is. He informs me that the first two are the only uncolorable cases he knows since 
Petersen's (the third appeared subsequently). Everything I have read or asked 
elsewhere confirms this situation. 

Part 4 supplies an infinite sequence of uncolorable 3-graphs, termed {Jk}, which 
I believe new and not in the BDS class. There is also in Part 4 one further uncolorable 
example, the double star graph, which belongs to a class Q. This class, although 
well-defined, offers only this one new instance at present. 

To assess the plenitude of uncolorable 3-graphs, below is their quantity, as derived 
from the ideas herein, for each V = number of vertices = necessarily even: 

V < 10 None (Sect. 5.3) 

V = 10 1 (Petersen's) (Sect. 5.3) 

V ? 18 More than 1 (Sect. 3.2). 
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1975] INFINITE FAMILIES OF NONTRIVIAL TRIVALENT GRAPHS 223 

I have not attempted accurate counts in the last cases. Whether uncolorable 
3-graphs exist (aside from trivial cases as later defined) for V = 12, 14, 16 is still 
open. 

2. GENESIS 

2.1 Basics. A cubic, trivalent, or 3-graph G is a connected, finite graph with 
exactly three edges meeting at each vertex. We also require G to satisfy some further 
conditions which will be stated and discussed in Section 2.4. 

A Tait coloring or 3-coloring of G consists of assigning one of three colors to 
each edge so that the three edges meeting at a vertex bear distinct colors. In this 
paper, graph or G will mean a 3-graph and coloring (as well as its grammatical 
variations) a 3-coloring except when otherwise noted; the coloring of a map, for 
example, will refer to the hues of its countries. 

A map, in the classical 4-color conjecture, may, as is well known, be taken so 
that but three countries meet at each juncture, implying that its edges form a 3-graph. 
The well-known relation between the two coloring problems we break into two 
statements. 

I. If a map on a surface of any genus is 4-colorable, then its edge graph G is 
3-colorable. 

(Let A, B, C, D be the colors of the countries. Color an edge of G 1 if the adjoining 
countries are A, B or C, D; 2, if they are A, C or B, D; 3, if they are A, D or B, C.) 

The converse is not true. Thus, Heffter's well-known map on the torus, which 
requires seven colors, has an edge graph which is 3-colorable. 

II. A planar map is 4-colorable if its edge graph is 3-colorable. 

(We use Lemma 2.4.2 and the definitions immediately preceding it. If the Tait 
set has but one cycle, planarity requires it to have an inside and an outside. The 
countries inside may be colored alternately A and B; those outside, C and D. When 
there are more Tait cycles, the plane will be divided into more regions. We bicolor 
the innermost ones first and, if this is done with suitable choices between the two 
color pairs, we can work outwardly to complete the coloring.) 

We shall persevere in denoting the edge colors by 1, 2 and 3. These symbols shall 
be used in the spirit that a permutation of them is immaterial. Thus, should we 
write "(1, 1, 2)", what we really mean is "(x, x, y), where x and y are any two 
distin&ct colors." 

Let V or V(G) denote the number of vertices of G; E or E(G), its edges. Then 
there is a positive integer A such that 

(2.1) V=2 2, E=32. 

and if G is colorable, there are A edges of each color. 
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224 RUFUS ISAACS [March 

(The simple proof is like that of the well-known Euler relation entailing 
V - E + F (F = number of faces).) 

When we speak of the size of a graph (large, small, etc.) we should refer to the 
magnitude of A. But we shall follow custom and use the even V instead. 

2.2 The Petersen Graph. This primary instance of an uncolorable graph 
- hereafter denoted by P - is worthy of scrutiny at the outset of our search for 
more. Figure 2.2 offers three depictions of P. At (a) is the way everyone seems to 
draw it, but I prefer (b) which I find more wieldy for coloring experiments. At (c) we 
see P drawn on a torus where it forms the edges of a five-country map requiring 
five colors. It is not the smallest such map; there is one with V only 8, but its edges 
are a 3-colorable graph. 

(a) (b) 

(c) 
FIG. 2.2 

There are several simple ways of showing P to be uncolorable. A formal proof is 
the case of k = 3 of Theorem 4.1.1. 

There are further striking advents of P. Whether or not they bear on coloring 
problems is a tantalizing question. 
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(Offered by the referee): We obtain P from the graph of edges and vertices 
of a regular dodecahedron by identifying opposite points. 

(Biggs in [8]): The usual (2) = 10 pairs from 5 objects can be the vertices 
of P if an edge between two means "the two pairs are disjoint." 

(My observation): The well-known Heawood Graph (see [7], page 61), 
is a 14-gon with two vertices i and j under consecutive numeration --also 
connected when i - j 5 mod 14. If any vertex and its three incident edges 
are removed, P results. 

All edges (and also vertices) of P are alike; more precisely, there is an auto- 
morphism of P which takes any edge into any other. Such follows from the preceding 
models; for example, rotations of the dodecahedron. 

2.3 Zones. Let G consist of two connected subgraphs, called zone bounds or 
bounds and exactly M other edges Zl, ..., Zm whose end vertices lie one in each 
bound. If M > 2, then for either zone bound A we require that 

(2.3) V(A) > M-2. 

Then the set of Z1 is called a zone (or M-zone). 
Symbols for the latter are Z (or ZM) which may also be used in an adjective or 

property sense of G to mean "G has a Z (or ZM)." 
A zone differs from the familiar cut-set of general graph theory only through 

the requirement (2.3). "Zone" probably is due to Miss Descartes, although we have 
extended her definition in [3]. Her term probably has precedence over cut-set. 

Now M - 2 is the minimal V the bound of an M-zone can have, as Lemma 2.5 
will show. For M = 2, (2.3) means A is not vacuous; that is, Z1 and Z2 cannot be 
the same edge which enters and then leaves A. 

Without (2.3) virtually every G would be ZM for all (sufficiently small) M > 1. 
For example, any three edges incident to a common vertex would comprise a Z3; 
any edge plus its end vertices would be the zone bound of a Z4. 

The zonality of a graph G is defined and annotated by 

Zon (G) = min {M: G is ZM}. 

2.4 Further graph requirements. Four conditions - indicated collectively by 
GC - which we shall generally take as part of the definition of a 3-graph, begin with 

NoZM (M = 1, 2, 3). 

They mean: G has no Zl, Z2 or Z3. Current papers require NoZl, "isthmus" 
being the usual term for a Zl. 

Note that NoZM implies that G has no loops, digons, or triangles (that is, closed 
circuits with 1, 2 or 3 edges) for M = 1, 2 or 3 respectively. The literature does not 
always require NoZ2 and NoZ3, but the much weaker bans on the latter two con- 
figurations are often adopted. We return to this matter in Section 5.1. 
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226 RUFUS ISAACS [March 

The general motive for the GC is to avoid trivially uncolorable cases. How the 
NoZM do this will emerge from Lemma 2.4.4 with amplification in Section 5.1. 

In Part 2 we shall allow some violations of the GC in the early stages of certain 
constructions, but not in the final resulting graphs. For convenience such violating 
configurations will be referred to as graphs. 

Other grounds for sometimes permitting violations is that they are often easily 
rectified. For example, the reader can readily see for himself how simple it is to purge 
digons and triangles in coloration problems. 

Squares (closed circuits with 4 edges) can also be purged, as the lemma to follow 
will show. Thus their presence suggests triviality and hence the fourth GC: 

NoSq 

which means: G has no squares. 
But this GC can be taken as optional. It will play no part in our analyses; the 

reader who wishes to abide uncolorable graphs with squares is free to do so.* 

LEMMA 2.4. 1. If G contains a square, S1 and S2 be the graphs obtained by deleting 
each of its two pairs of opposite sides. Then G is colorable if and only if one of SI 
and S2 iS. 

The reader can prove this more easily by exploring possible coloring cases than 
I can with text. 

Note the rectification done. More may be needed on the SI and S2 generated 
by the first. 

A Tait cycle of G is a set of an even number of edges of G and their incident 
vertices which constitute a simple, closed curve. A Tait set is a disjoint set of such 
cycles which contain all the vertices of G. 

Very well known is 

LEMMA 2.4.2. A graph G is colorable if and only if it has a Tait set. 

(If G is colored, starting from a vertex v, form the path lying on edges alternately 
colored 1 and 2. As G is finite there must be a first recurrence of a path vertex. This 
can happen only at v. If there are vertices not on the Tait cycle just constructed, 
start again, etc. 

Conversely, if G has a Tait set, color its edges alternately 1 and 2, and the others 3.) 
A consequence is: A Zi graph is uncolorable. 
This motivates (in part (see Sect. 5.1)) NoZI. 
A Tait set with but one Tait cycle is a Hamilton cycle. Thus when G has a Hamilton 

cycle it is colorable. The converse - although experience suggests that it holds 
nearly always - is not true; there are many colorable 3-graphs known which have 
no Hamilton cycles. 

* But the lemma will be used in Part 5 when we are concerned with minimal size graphs. 
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The following basic lemma appears in both [2] and [3]. It will be used often in 
the sequel. 

LEMMA 2.4.3. In a ZM of a colored graph G, let nj be the number of Zi of color]. 
Then 

n - n2- n3-M (mod2). 

Likewise for cut-sets. 

Proof. Those Zi which are colored 1 and 2 must belong to a Tait set which must 
cross from one zone bound to the other an even number of times. Thus n1 + n2 is 
even. This proves the first congruence and also the second. As to the third: 

n1-3n1, nJ = M mod 2. 

Likewise for cut sets as (2.3) is not invoked. 
An edge lacking one end vertex will be called a pendant. Thus, if we sever an 

edge of G, we create two pendants; if we remove a vertex, we create three. Each 
resulting figure is an instance of a graph with [M] pendants or a Gp [GpM]. A Gp of 
course is not a graph. However, if we take one or several Gp and weld each pendant 
to another, graphhood is usually restored. 

These terms are merely a handy locution. If G is Z and we sever the Zi, G splits 
into two Gp which do not differ instrumentally from the zone bounds of Z. In fact, 
when lecture hall and blackboard is the medium, pendants are dispensable. 

Every Gp is assumed to satisfy the GC in the sense that it is such a zone bound 
of some G; likewise it is connected. 

Let G be Z2. Sever Z1 and Z2 and weld together the two pendants from each 
zone bound. We then have, after rectifications if needed, two graphs, G1 and G2. 
For a G which is Z3, sever all three Z, and weld the pendants from each zone bound 
to a new vertex. Again call the two resulting graphs G1 and G2. 

LEMMA 2.4.4. A G which is Z2 or Z3 is colorable if and only if G1 and G2 
both are. 

Proof. Let G be colored. If it is Z2, from Lemma 2.4.3, Z1 and Z2 will be colored 
alike and the coloration of G carries over into G1 and G2. If G is Z3, the lemma 
tells us that the three Zi will be colored 1, 2 and 3. Again the coloring of G persists 
in G1 and G2. 

Now let G1 and G2, arising from a Z2, be colored. If necessary, permute the 
colors in one G1 so that the two welded edges of G1 and G2 match. The colorings 
now serve for G. The reasoning for the Z3 case is similar. 

Hence some motivation for NoZ2 and NoZ3! If we find an uncolorable G, 
which is Z2 or Z3, we can perform on it the preceding dissection and know that one 
of G1 and G2 is uncolorable. By discarding the other one, we rectify the GC violation. 
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More forceful is the converse. Suppose we find an uncolorable graph U. By 
severing an edge and welding the two arising pendants to an arbitrary A, which is 
a Gp 2, we obtain an uncolorable graph denoted by U2A. Similarly U3A arises from 
removal of a vertex from U and welding the three pendants to A, now a Gp3. 

As A is arbitrary either operation yields an infinity of uncolorable graphs. It seems 
natural to condemn all but U as being trivial; see Section 5.1. 

2.5 Minimal Gp. Such are GpM of least V. 

LEMMA 2.5. If A is a GpM with M > 2, the minimal possible V(A) is M - 2. 

Proof. Let f(M) be the sought minimum. For M = 2, we accept A's being the 
vacuous graph and so f(2) = 0. For M > 2, this - two pendants thought of as 
lying on one edge with no end vertices - cannot occur, or A would be not connected. 

From M = 3, clearly f(M) = 1. But for M > 3 we cannot have three pendants 
from the same vertex or again A would not be connected. 

For M > 3, one of these cases must arise: (1) Each pendant is incident to a 
distinct vertex; (2) A pair of pendants meet a common vertex v. For (1), V(A) > M 
and = M when A is an M-gon. For case (2), letting A be minimal, we proceed 
inductively. The remaining edge from v and the M - 2 pendants other than the pair 
meeting v can be considered a fresh set of M - 1 pendants from a Gp, which must be 
minimal if A is and therefore has f(M - 1) vertices. Then 

V(A) = 1 +f(M -1) = 1 + ((M - 1)- 2) = M -2. 

As such is less than the M ensuing from case (1), the lemma is proved. 

3. THE BDS CLASS OF UNCOLORABLE GRAPHS 

3.1. The class. The letters in the title stand for Blanusa, Descartes and Szekeres* 
whose graphs belong to this class and who inspired its construction. 

We shall use U and W to denote uncolorable graphs and A an arbitrary pendant 
graph which may or may not be colorable. Such will be used as components in 
constructing a final graph G. Pendants will be bestowed on the U and W component 
graphs and pairs of pendants will be welded together. There will be various types of 
pendant bestowal which will imply rules for pendant colors should G be colorable. 

We have already seen two such constructions: U2A and U3A. The types used 
here will be symbolized by (e) and (v). Two other types will suffice for us: 

(e, e). Sever any two edges of a component U which meet no common vertex. 
From each we obtain a pair of pendants. Then each pair must bear the same 
two unlike colors, for any coloring of G. 

Proof. The four pendants lie on a Z4 of G and we can apply Lemma 2.4.3. 

* If, through ignorance, I have omitted other prior discoverers of uncolorable graphs, I beg any 
writer who adopts my nomenclature to include their initials in the title. 
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If one pair had matching colors, from the lemma, so must the other. But then the 
unsevered U would be colorable. Thus we may suppose one pair is colored 1, 2. 
Again from the lemma, so must the other. 

(vev) (or (v1ev2)). Here v1 and v2 are the end vertices of any edge e of a component 
W of G. Sever the other two edges meeting v1 and obtain a pendant pair. Obtain 
another likewise from v2, discarding e, v1 and v2. Then each pair must bear matching 
colors. 

Proof As before we assume a colored G with a Z4 and may apply Lemma 2.4.3. 
It tells us that if one pair were colored 1, 2 so would be the other. But then, by 
letting e be colored 3, the unsevered W would be colored. 

We now define our basic operation which we call a dot product. Let U and W 
be any two graphs. Let four pendants emerge from U of type (e, e) and four from W 
of type (vev). By U * W we mean a graph obtained by welding the pendants of U to 
those of W in any way as long as pairs - in the sense of definitions of (e, e) and 
(vev) - weld to pairs. 

Figure 3.1(a) diagrams U * W. 

U 

\ (e,e) 

>(teiv) 

FIG. 3.1 (a) 

Observe that U W is a set of graphs, for in the preceding text there are three 
usages of "any." They can denote choices, hence different U W. (Not always: if 
W = P, all (vev) are alike if we recall the final paragraph of Section 2.2. However, 
we shall soon have graphs with A components and the choice will be rich.) 

THEOREM 3.1. If U and W are uncolorable, so is U W. 

Proof Were U * W colorable, it could be G in the proofs of the (e, e) and (vev) 
color rules and these rules would hold. But they are incompatible. 

We are now in a position to place one of the extant examples. 
Blanuga's graph is P P. 
(Rather one of the P P. But which one does not seem very consequential.) 
There are variations on the dot theme. First, we can inductively compound the 

operation. Infinite sequences of uncolorable graphs can be built in steps: any un- 
colorable graphs from earlier steps can be used for U or W in the next. 
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Szekeres' graph, with V = 50, is of this kind. It is 

P * (P * (P * (P * (P ? P)))) 

where, in terms of Figure 2.2(a), he takes the five e in (vev) as the five radial edges of 
the rightmost P in the formula and the (e, e) of the other P are a side of the star and 
the opposite arc of the circle. 

A second variation arises from letting U violate NoZ2 or NoZ3. If the two e of 
the (e, e) are chosen on opposite zone bounds of the Z2 or Z3 of U, then the GC of 
U * W will hold. 

We could form, for example, U2A W. Another example is diagrammed in 
Figure 3.1(b). It is 

A12U3A2* W 

and is, I hope, self-explanatory. 

(b) (C) 
FIG. 3.1 

Even a NoZl is permissible. Were we to form A11A2 -W, it would be Z3 and so 
unacceptable. But we can restore the GC by a second dot operation, obtaining 

(AIlA2 ' WI) ' W2 

which is depicted in Figure 3.1(c). 
Finally, a variation leading to large uncolorable graphs. We first form the graph(s) 

G2= A33U23A4 * (A13U13A2 * W). 

(The operational 3's could be replaced by 2's and so throughout) so that the two 
edges appearing in the two (vev) of W have a common end vertex vo. The reader 
who carries out the construction will see that, after the first dot operation, the re- 
maining edge from vo has become an edge WA2, but it can be used in the second 
(vev) nontheless. The G2 he will obtain appears in Figure 3.1(d). 
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( veu (ve) 

FIG. 3.1 (d) 

We now ask: Can A2 and A3, connected by two edges, be replaced by a single 
arbitrary graph AO, as suggested in the figure? They can. We only need realize that 
the sole role of the Ai in these constructions is as a vehicle for Lemma 2.4.3. If it 
holds for AO, then the two edges A2A3 (which is not a Z2 of G2) can be so colored 
that it holds for each of A2 and A3, while the converse is clear. 

We so blend A2 and A3 into Ao and then construct 

G3 = A53U33A6 * G2 

using for the e of the (vev) in G2 the third edge incident to vo, which has by now 
become the central vertical line in the Figure 3.1(d). We again blend two Ai into one, 
which now has nine edges emerging from it, three going to each U,. 

We continue this procedure until the edges of W are exhausted. We reach 
GE(W), from whose diagram W has disappeared. But our final graph is isomorphic 
to W in the following sense. The (final) Ai correspond to vertices of W and the Uj, 
to the edges. When a vertex and edge of W are incident, their isomorphs are connected 
by triples of edges which are of the (v) type in each Uj. 

Note that "triples" could as well be "pairs" (of the (e) type at the U) which 
gives a second isomorph of W. 

Blanche Descartes' graph is of this (first) isomorphic type with the Uj and W 
all equal to P and the Ai all "nonagons." 

Her derivation (or proof) is quite different from ours. It is not based on repetitions 
of one operation but proceeds directly (and more simply) to the final graph. She 
employs reasoning somewhat akin to our approach to Theorem 3.1. We leave to the 
reader the pleasure of reconstructing her elegant proof; the adaptation to the second 
kind of isomorph is likewise rewarding. 

If our derivation is longer it is because our objective is to unify. The Descartes 
and dot techniques at first looked very disparate, but unity is obtained by the latter. 
To recapitulate, it is: 

The BDS class consists of results of repeated dot products of given uncolorable 
graphs. The second operands may violate the NoZM (M = 1, 2, 3) provided that 
connections can be made which restore ultimate obedience to the GC. 
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3.2 Graph sizes in the BDS class. We inquire as to graphs of what V appear in 
our class. We can see that V(P * P) = 18. This is as small as possible, for Theorem 5.3 
will show P to be the smallest uncolorable graph. 

If the Ai appearing are allowed to be completely arbitrary (see Sections 3.3 
and 5.1) we can use this lemma from which we omit a proof: 

LEMMA 3.2. For a fixed M > 4, there exists GpM with V any even number 
> M-2, except when NoSq holds, M = 4 and V = 4 or 6. 

Using the preceding examples we find that there are BDS graphs with V = any 
even number > 18. 

For certain V they will be especially numerous due to variegated dot products, 
using, say, the Jk of Part 4 as U or W components, etc. But we have not attempted 
any precise counting. 

3.3 Zonalities in the BDS Class. Clearly 

(3.3) Zon(U * W) = 4 

for the four edges UW are a Z4 and U and W fulfill the GC, banning lesser zones. 
The same zonality might appear to hold for any BDS graph G: if G is constructed 
from repeated dot operations, we can regard (3.3) as valid for the last. But our 
conclusion is untrue. 

We return to G2, depicted in Figure 3.1(d). Before A2 and A3 were blended, 
Zon (G) = 4 as the two edge pairs WA4 and A2A3 are clearly a Z4. But if A2 and A3 
are blended, the choice of into what A0 determines the zonality. We see that 
Zon (G2) = 4 can require that, by severing two edges of A0, it splits into two parts 
of which one meets the three edges AOU2 and these only. But there are choices of 
A0 that require more than two severings to attain this split. If so, Zon (G2) = 5 
(the edges WA1, WAO, WA4 are a Z5) provided that the zonalities of U1, U2, and 
W2 each > 4 (such seems true, for example, if all three are P). 

But it is also possible to choose Ao so that one severing will suffice: the zonality 
is then 3. 

Were the zonality of all BDS 4, it would seem to be useful towards characterizing 
this class. For example, we would know the uncolorable graphs of Part 4 are a distinct 
set (see Section 4.3). 

Despite the preceding arguments, there does seem something intrinsic about 
zonality 4 for the BDS class. Perhaps in the future of this theory, something like this 
will be done: 

The BDS graphs are divided into equivalence (or something like) subclasses so 
that all with the same diagram - in the sense of Figure 3.1 - belong to the same 
subclass. In each there are canonical members determined by some canonical choice 
of the Ai. A new zonality of G could be defined as the old zonality of a canonical 
representative of G's class. 
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This seems a hopeful possibility for canonical Ai: Ai is a polygon such that all 
edges leading to the same other component of G emanate from consecutive vertices 
of Ai. Then two severings of Ai would lead to splits suitable for zonal divisions. 

4. AN INFINITE SEQUENCE OF UNCOLORABLE GRAPHS, THE Q CLASS AND THE 
DOUBLE STAR 

4.1 The sequence. These graphs will be denoted by Jk for k an odd integer ? 3. 
The first three, which are typical, appear in Figure 4.1(a). 

J3 J5 J7 
FIG. 4.1 (a) 

We see that J3 is the Petersen graph after rectifying the violation of NoZ3 by 
replacing the central circle by a single vertex. (Notationally, if T is the triangle, 
J3 = P3TT) 

THEOREM 4.1.1. The Jk are uncolorable. 

L R 

FIG. 4.1 (b) 

Proof. Let Y be the Gp shown by Figure 4.1(b) which has three pendants ex- 
tending to the left and three to the right. If Y is colored, how will the right pendants 
respdnd to assigned colors on the left? There are three possibilities for this assignment: 

(1) (1, 1, 1) (or all colors on the left alike). This is impossible as one of the three 
central edges must be colored 1. 

(2) (1,1,2) (or just two colors alike). The reader who explores the simple pos- 
sibilities will find there are two. Both yield for colors on the right (2, 3,3) but in 
two different orders. 
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Had we started with (2, 3, 3) on the left we similarly will conclude with (1, 2, 2), 
in some order, on the right. Thus, if we form a chain of replicas of Y by welding 
the right pendants of one to the left of the next, the two kinds of colorings will 
alternate. We conclude that a closed circuit so made from an odd number of Y 
cannot be colored in this fashion. 

(3) (1,2,3) (no colors alike). Again we beg the reader to explore. There again 
result two possibilities. Both are (1,2,3), but in both cyclic order, in the sense of 
the arrows in Figure 4.1(b), is preserved. So it will be if we weld together two Y 
when both remain as drawn. But if we were to make one pair of the newly welded 
edges cross, the cyclic ordering would be reversed. Therefore, if we build a closed 
circuit of Y with an odd number of such crossovers, it could not be colored in this 
fashion. 

Hence a circuit with an odd number k of Y and an odd number of crossovers 
cannot be colored at all. But such is Jk - in fact, should be taken as its formal 
definition. 

REMARK. Graphs can be deceptive graphically. Thus, when making the three 
drawings of Figure 4.1(a), my intent was to depict just one crossover in each on 
its double outer rim. This was to occur at the bottom! Superficially such seems 
exactly contrary to appearance. I leave this mild paradox to the reader. 

Or we can simply say that an odd number of crossovers is to mean that the two 
outer rims consist of a single circuit. 

4.2 The possible Q class and the double star. The class Q of uncolorable graphs is 
called possible, because as yet I know of only three members. Of these only one is 
new; I call it the double star graph and it is depicted in Figure 4.2. 

Of a GpS, from Lemma 2.4.3, the pendants must be colored 

(1) 1,1.,1,2, 3 

in some order. Now suppose the Gp5 has rotational symmetry, so that, from a 
suitable color ordering of (1), a cyclic permutation will give another. There are only 
two possibilities, representable either by C = (1, 1, 1,2, 3) or S = (1, 1,2, 1, 3). In 
other words, either the three matching pendants are consecutive (C) or they are 
separated in the only way possible (S). 

Let Hs [Hc] be the set of all rotationally symmetric Gp5 which are not colorable 
when the colors of the pendants are S[C]. We define: H = Hs U Hc. 

The class Q is the set of G arising in 

THEOREM 4.2.1. From each pair H1,1J2 (distinct or not) in H we can construct 
an uncolorable G. 

Proof. If H1 E Hs, H2 E Hc, we form G by welding the pendants of H1 to those 
of H2 so as to preserve their cyclic order. The new e'dges must be colored according 
to C or S; either way contradicts the definition of H1 or of H2. 
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FIG. 4.2 

If H1, H2 both E Hs (or HC), we now weld their pendants so that adjacent ones 
on H1 attach to alternate ones on H2. Then an S (or C) coloring of the pendants of 
H1 transfers into a C (or S) coloring on H2, so that a total coloring is impossible. 

Notation: G = <H1, H2>. 

In Figure 4.1(a) sever the five radial edges of J5, cutting it into two rotationally 
symmetric Gp5. The inner one, a pentagon, we call V, the outer, we call V*. Now V 
can be colored with C holding for the pendants by coloring the sides of pentagon 
3, 2, 3, 2, 1. Then V* cannot be colored with C holding or, by rewelding our severings, 
we would have colored J5. Therefore V* E HC ' H. 

Observe that P is two copies of V with adjacent pendants of one welded to 
alternate ones of the other. Were Valso colorable with S holding, then P would be 
colorable. Therefore Ve Hs c H. 

We have established 

P= <V,V>, Js = <V, V*>. 

The third known member of Q is 
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< V+, V*> 

which is the double star. Thus we have proved 

THEOREM 4.2.2. The double star graph is uncolorable. 

4.3 Nonmembership in the BDS class. The preceding graphs certainly do not ap- 
pear to belong to the BDS class, although I do not claim a rigorous proof. The evi- 
dence is: 

(1) We have seen in Section 3.3 that there is an aura of zonality 4 over BDS 
graphs, while for Part 4 we appear to have 

Zon(Q) 5 

Zon(Jk) = 6 (k > 5). 

(2) In the BDS class arbitrary A can be inserted into any related pair or triple 
of edges connecting a U or W. The simplest such nonvoid A is a "rung," that is, 
a new edge bridging two new vertices inserted in each of two edges (with triangles 
avoided). 

Such a rung cannot be inserted in P without rendering it colorable, as can be 
learned from exploring all cases. From some sample trials on the Jk, the same appears 
likely true, but I know of no general proof. 

(3) The BDS spring from at least two initial uncolorable graphs. But the Jk 
and double star do not appear to contain anything of such ilk. 

We might note that BDS graphs might be built using a Jk or double star for the 
various U and W, but U and W themselves are not in BDS. 

Also note that we have constructed both BDS graphs as well as the Jk and Q by 
welding together components, but the underlying ideas seem very different. 

5. SOME GENERAL IDEAS 

5.1 What means trivial? We have claimed nontriviality in the main title and 
feel a defense is obligatory. As to the question in the section title, this seems the 
underlying principle: 

If we have found one evasive solution to a problem and others arise from it in 
an obvious way, we tend to call these others trivial. They can then be banned by 
a4ding postulates designedfor this purpose. 

Thus the answer reduces to that of another question: 

What means obvious? 

it is, of course, a relative term, depending on our sophistication and that of our 
mathematical era. 
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But let us turn to levels of what might be deemed trivia in our current subject. 
(1) Graphs with an isthmus or Zl seem universally banned. There are two reasons. 

First, if such a graph is planar it cannot be the boundary edges of a map. Second, 
although there surely are infinitely many AlA graphs, all uncolorable, they are 
about as obviously so as a 3-graph can be. 

(2) We have seen that from one U we can form infinitely many U2A and U3A, 
all uncolorable. Although the literature I have found on Tait coloring is sparse, I 
think it astonishing that I have not encountered a specific ban on such graphs, 
aside from the weak special cases of digons and triangles. Nevertheless, I assume 
the ban is there tacitly. It is hard to imagine anyone seeking uncolorable 3-graphs 
without becoming aware of the U2A and U3A possibilities. Yet I have read the 
statement that very few uncolorable G are known. This must be so from either 
ignorance or a tacit ban; I take the latter as far more likely. Yet "How obvious?" 
is here a puzzling question. 

Note that all this occurs in map coloring too, where the literature is much vaster, 
although I have read but a bit of it. For example, if U is the edge graph of a map 
on a torus 7-or-more-colorable and A any planar Gp, then U2A and U3A are edge 
graphs of other such maps. 

(3) If arbitrary A components, as in (2), are to be banned, as we did in the GC, 
should they not be banned in the BDS class also? Hardly, for then such desirable 
specimens as Miss Descartes' isomorphs would have to go. We could check a trivial 
infinitude by only admitting A of some canonical form. But what form? We could, 
as in Section 3.3, select polygonal A so as to preserve zonality. Minimal Gp is another 
appealing possibility (but there is more than one minimal GpM for a given M > 4). 

Probably some reckoning by subclasses, as suggested in Section 3.3, is the future 
course. 

The principle given earlier could be pushed further. The BDS class springs from 
applications of the dot process. We could become so sophisticated as to call this an 
"obvious way" and hence exile the entire BDS class. 

But such exiling, if pushed far enough, would annihilate all mathematics. 

5.2 Planarity. We know that "Every uncolorable 3-graph is not planar" 
implies the classical 4-color conjecture. Let us accordingly look then at the ascer- 
tainment of planarity of 3-graphs. 

The well-known theorem of Kuratowski (see, for example, [5]) states that a 
general graph is not planar if it contains one of two particular graphs. Now one 
of these two is not trivalent, so we need only be concerned with the other. It is 
shown in Figure 5.2(a) and is called the utilities graph - UG for short. By G pos- 
sesses UG is meant that a graph like UG, except that its edges may be replaced by 
paths, is a subgraph of G. In other words, if we are allowed to alter Figure 5.2(a) 
by putting new dots on the interior of its arcs, it can become a depiction of a sub- 
graph of G. 
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(a) (b) 
Fio. 5.2 

Thus our tool here is 

LEMMA 5.2. G possesses UG if and only if G is notplanar. 

THEOREM 5.2.1. The Petersen graph is not planar. 

Proof. A glance at Figures 2.2(b) and 5.2(a). 

THEOREM 5.2.2. Let G be in the BDS class. Then G is not planar ifone of its original 
U or W components is not. 

Proof Let U be such a component so that U possesses a UG. The UG will 
survive the construction of G. Suppose a pair of connecting edges from U to another 
component C (a U, W or A) if G were of type (e) at U and that the severed edge e of 
(e) belonged to the UG. We can replace e by a path in G by starting from one end 
vertex of e, following the connecting edge to C, then, as C is connected, following a 
path in it to the other connecting edge and back to the other terminal of e. Other 
types of connecting edges are handled similarly. 

THEOREM 5.2.3. The Jk are not planar. 

Proof. For the outer circle of the UG we can use the hexagon indicated by the 
heavy lines in Figure 5.2(b). The remaining paths of the UG are not hard to discover. 

I have deliberately refrained from thinking about the planarity of the double 
star graph so that I can bequeath a lottery ticket to the reader, albeit at long odds. 
Let him investigate the question. If the answer is yes, he will have the glory of having 
resolved the 4-color conjecture. 

5.3. The Petersen graph is the sole smallest uncolorable graph. The girth y(G) 
of G is the smallest n such that G contains an n-gon. Tutte, in [7] Chapter 8, proves 
that the smallest graph of girth 5 can only be P. As his work is embedded in a frame- 
work of broader results, we give a simplified adaptation here. 

If y(G) = 2, 3 or 4, G would contain a digon, triangle or square, and so, as shown 
earlier, could not be smallest uncolorable graph. Thus? we assume y(G) ? 5. 
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Let y(G) = n so that G contains an n-gon H. There is a third edge (not in H) 
ei emanating from each vertex vi of H. Clearly no ei can join two vj, Nor can any ei 
and ej terminate at the same vertex (not in H) or ei, ej plus the smaller "arc" of H 
joining vi, vj, would lie on an m-gon with m < 2 + [n/2] which would be smaller 
than H when, as here, n > 5. Thus, V(G) ? 2n. Thus, if n > 5, V(G) > 10 and G is 
larger than P. 

We now have y(G) = 5 with each vi connected to a new vertex v. If there are 
to be no further vertices, the five vj' must, to avoid triangles, etc., belong to a second 
pentagon. Now the two pentagons must have consecutive vertices of one connected 
to alternate vertices of the other (again to avoid squares, etc., as the reader can 
easily see by sketching the various possibilities) and so P, as depicted in Figure 2.2(a) 
ensues and hence the titular theorem. 

5.4 Tutte's conjecture. Throughout our work P seems ubiquitous and Tutte con- 
jectured that this would be so when very few uncolorable graphs were known and 
to date he seems right. 

Our version of his well-known conjecture - which implies the 4-color conjec- 
ture - shall be 

Every uncolorable graph possesses the Petersen graph. 
This form allows us to state 

THEOREM 5.4. A graph in the BDS class satisfies Tutte's conjecture if one of the 
original V or W does. 

The proof is virtually the same as that of Theorem 5.2.2. 
I leave to the reader the hunt for P in the Jk and double star. 
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