Virtual quandle
 for links in lens spaces
 (Based on joint work with A. Cattabriga, 2019)

T. Nasybullov

Sobolev Institute of Mathematics, Novosibirsk State University timur.nasybullov@mail.ru

Conference on Physical Knotting, Vortices and Surgery in Nature 05.08.2020

Links in S^{3}

A n-component link L in S^{3} is an embedding of n disjoint circles S^{1} to the 3 -sphere S^{3}.

Links in S^{3}

A n-component link L in S^{3} is an embedding of n disjoint circles S^{1} to the 3 -sphere S^{3}.

Two links L_{1}, L_{2} are said to be equivalent if there exists a preserving orientation homeomorphism φ of S^{3} such that $\varphi\left(L_{1}\right)=L_{2}$.

Links in S^{3}

A n-component link L in S^{3} is an embedding of n disjoint circles S^{1} to the 3 -sphere S^{3}.

Two links L_{1}, L_{2} are said to be equivalent if there exists a preserving orientation homeomorphism φ of S^{3} such that $\varphi\left(L_{1}\right)=L_{2}$.

Knot recognition problem: Construct an algorithm which for two given links L_{1}, L_{2} says if these links are equivalent or not.

Links in S^{3}

A n-component link L in S^{3} is an embedding of n disjoint circles S^{1} to the 3 -sphere S^{3}.

Two links L_{1}, L_{2} are said to be equivalent if there exists a preserving orientation homeomorphism φ of S^{3} such that $\varphi\left(L_{1}\right)=L_{2}$.

Knot recognition problem: Construct an algorithm which for two given links L_{1}, L_{2} says if these links are equivalent or not.

Let S be an arbitrary set. The map f from the set of all links to the set S is called S-valued knot invariant if for any two equivalent links L_{1}, L_{2} the values $f\left(L_{1}\right), f\left(L_{2}\right)$ are the same.

Group of a link

$f: L \rightarrow \pi_{1}\left(S^{3} \backslash L\right)=G(L)$ is a link invariant.

Group of a link

$f: L \rightarrow \pi_{1}\left(S^{3} \backslash L\right)=G(L)$ is a link invariant.

Group of a link

$f: L \rightarrow \pi_{1}\left(S^{3} \backslash L\right)=G(L)$ is a link invariant.

Label the arcs by $x_{1}, x_{2}, \ldots, x_{n}$.

Group of a link

$f: L \rightarrow \pi_{1}\left(S^{3} \backslash L\right)=G(L)$ is a link invariant.

Label the arcs by $x_{1}, x_{2}, \ldots, x_{n}$. Then $G(L)$ has Generators: labels on the arcs.

Group of a link

$f: L \rightarrow \pi_{1}\left(S^{3} \backslash L\right)=G(L)$ is a link invariant.

Label the arcs by $x_{1}, x_{2}, \ldots, x_{n}$. Then $G(L)$ has
Generators: labels on the arcs.
Relations: $y^{-1} x y=z$ near all crossings, where the labels are as on

Group of a link

$f: L \rightarrow \pi_{1}\left(S^{3} \backslash L\right)=G(L)$ is a link invariant.

Label the arcs by $x_{1}, x_{2}, \ldots, x_{n}$. Then $G(L)$ has
Generators: labels on the arcs.
Relations: $y^{-1} x y=z$ near all crossings, where the labels are as on

$G(L)=\left\langle x_{1}, x_{2}, x_{3} \mid x_{3}^{-1} x_{1} x_{3}=x_{2}, x_{1}^{-1} x_{2} x_{1}=x_{3}, x_{2}^{-1} x_{3} x_{2}=x_{1}\right\rangle$.

Quandle of a link

Quandle Q is an algebraic system $(Q, *)$ such that
$1 \quad x * x=x$ for all $x \in Q$.
2 The map $S_{x}: y \mapsto y * x$ is a bijection of Q.
$3 \quad(x * y) * z=(x * z) *(y * z)$ for all $x, y, z \in Q$.

Quandle of a link

Quandle Q is an algebraic system $(Q, *)$ such that
$1 \quad x * x=x$ for all $x \in Q$.
2 The map $S_{x}: y \mapsto y * x$ is a bijection of Q.
$3(x * y) * z=(x * z) *(y * z)$ for all $x, y, z \in Q$.

Quandle of a link

Quandle Q is an algebraic system $(Q, *)$ such that
$1 \quad x * x=x$ for all $x \in Q$.
2 The map $S_{x}: y \mapsto y * x$ is a bijection of Q.
$3 \quad(x * y) * z=(x * z) *(y * z)$ for all $x, y, z \in Q$.

The quandle $Q(L)$ can be found in the following way

Generators: labels on the arcs.
Relations: $x * y=z$ near all crossings.

Quandle is an almost complete invariant

Theorem

Let L_{1}, L_{2} be two links in S^{3}. Then $Q\left(L_{1}\right)$ and $Q\left(L_{2}\right)$ are isomorphic if and only if L_{1}, L_{2} are weakly equivalent.

D. Joyce, A classifying invariant of knots, the knot quandle
J. Pure Appl. Algebra, V. 23, N. 1, 1982, 37-65.

S. Matveev, Distributive groupoids in knot theory Mat. Sb. (N.S.), V. 119(161), N. 1(9), 1982, 78-88.

Virtual links

L. Kauffman, Virtual knot theory

European J. Combin., V. 20, N. 7, 1999, 663-690.

Equivalent virtual links

Two virtual knot diagrams are called equivalent if one of these diagrams can be transformed to another one by a finite sequence of moves depicted below.

Virtual links

Goussarov-Polyak-Viro, 2000: Let L_{1}, L_{2} be two virtual link diagrams which have only classical crossings. If these link diagrams are equivalent as virtual diagrams, then they are equivalent as classical knot diagrams.

Virtual links

Goussarov-Polyak-Viro, 2000: Let L_{1}, L_{2} be two virtual link diagrams which have only classical crossings. If these link diagrams are equivalent as virtual diagrams, then they are equivalent as classical knot diagrams.

Knot recognition problem: Construct an algorithm which for two given virtual links L_{1}, L_{2} says if these links are equivalent or not.

Virtual links

Goussarov-Polyak-Viro, 2000: Let L_{1}, L_{2} be two virtual link diagrams which have only classical crossings. If these link diagrams are equivalent as virtual diagrams, then they are equivalent as classical knot diagrams.

Knot recognition problem: Construct an algorithm which for two given virtual links L_{1}, L_{2} says if these links are equivalent or not.

Let S be an arbitrary set. The map f from the set of all virtual links to the set S is called S-valued knot invariant if for any two equivalent links L_{1}, L_{2} the values $f\left(L_{1}\right), f\left(L_{2}\right)$ are the same.

Quandle of a virtual link (L. Kauffman)

Quandle of a virtual link (L. Kauffman)

Label the long arcs by $x_{1}, x_{2}, \ldots, x_{n}$.

Quandle of a virtual link (L. Kauffman)

Label the long arcs by $x_{1}, x_{2}, \ldots, x_{n}$. Then $\widetilde{Q}(L)$ has Generators: labels on the long arcs.

Quandle of a virtual link (L. Kauffman)

Label the long arcs by $x_{1}, x_{2}, \ldots, x_{n}$. Then $\widetilde{Q}(L)$ has Generators: labels on the long arcs.
Relations: $x * y=z$ near all crossings, where the labels are as on

Quandle of a virtual link (L. Kauffman)

Label the long arcs by $x_{1}, x_{2}, \ldots, x_{n}$. Then $\widetilde{Q}(L)$ has
Generators: labels on the long arcs.
Relations: $x * y=z$ near all crossings, where the labels are as on

$$
\widetilde{Q}(L)=\left\langle x_{1}, x_{2} \mid x_{2} * x_{1}=x_{1}, x_{1} * x_{1}=x_{2}\right\rangle=\left\{x_{1}\right\} .
$$

Virtual quandle of a knot (V. Manturov)

Virtual quandle $V Q$ is an algebraic system $(Q, *, f)$ such that
$1(Q, *)$ is a quandle.
2 The map $x \mapsto f(x)$ is bijective.
$3 \quad f(x * y)=f(x) * f(y)$.

Virtual quandle of a knot (V. Manturov)

Virtual quandle $V Q$ is an algebraic system $(Q, *, f)$ such that
$1(Q, *)$ is a quandle.
2 The map $x \mapsto f(x)$ is bijective.
$3 \quad f(x * y)=f(x) * f(y)$.

Virtual quandle of a knot (V. Manturov)

Virtual quandle $V Q$ is an algebraic system $(Q, *, f)$ such that
$1(Q, *)$ is a quandle.
2 The map $x \mapsto f(x)$ is bijective.
$3 \quad f(x * y)=f(x) * f(y)$.

The virtual quandle $V Q(L)$ can be found in the following way

Virtual quandle of a knot (V. Manturov)

Virtual quandle $V Q$ is an algebraic system $(Q, *, f)$ such that
$1(Q, *)$ is a quandle.
2 The map $x \mapsto f(x)$ is bijective.
$3 \quad f(x * y)=f(x) * f(y)$.

The virtual quandle $V Q(L)$ can be found in the following way
Generators: labels on the semiarcs.

Virtual quandle of a knot (V. Manturov)

Virtual quandle $V Q$ is an algebraic system $(Q, *, f)$ such that
$1(Q, *)$ is a quandle
2 The map $x \mapsto f(x)$ is bijective
$3 \quad f(x * y)=f(x) * f(y)$

The virtual quandle $V Q(L)$ can be found in the following way

Generators: labels on the semiarcs.
Relations: $y=t, x * y=z$ near classical crossings, $t=f(y), z=f^{-1}(x)$ near virtual crossings.

Lens spaces $L(p, q)$

Let p, q be coprime integers.

Lens spaces $L(p, q)$

Let p, q be coprime integers. $L(p, q)=B^{3} / \sim$, where $x \sim f_{3} \circ g_{p, q}(x)$.

Lens spaces $L(p, q)$

Let p, q be coprime integers. $L(p, q)=B^{3} / \sim$, where $x \sim f_{3} \circ g_{p, q}(x)$.

$L(p, q)$ can be obtained by a p / q rational surgery on the unknot in the 3 -sphere S^{3}.

Links in lens spaces

A n-component link L in $L(p, q)$ is an embedding of n disjoint circles S^{1} to $L(p, q)$.

Links in lens spaces

A n-component link L in $L(p, q)$ is an embedding of n disjoint circles S^{1} to $L(p, q)$.

D. Buck, M. Mauricio, Connect sum of lens spaces surgeries: application to Hin recombination Math. Proc. Cam. Philos. Soc., V. 150, 2011, 505-525.

Links in lens spaces

A n-component link L in $L(p, q)$ is an embedding of n disjoint circles S^{1} to $L(p, q)$.

D. Buck, M. Mauricio, Connect sum of lens spaces surgeries: application to Hin recombination Math. Proc. Cam. Philos. Soc., V. 150, 2011, 505-525.

S. Stevan, Torus knots in lens spaces and topological strings
Ann. Henry Poincare, V. 16, 2015, 1937-1967.

Surgery link

Mixed link diagram

Punctured link diagram

Punctured link diagram

Band diagram

Band diagram

Links in lens spaces

Two links L_{1}, L_{2} in $L(p, q)$ are said to be equivalent if there exists a preserving orientation homeomorphism φ of $L(p, q)$ such that $\varphi\left(L_{1}\right)=L_{2}$.

Links in lens spaces

Two links L_{1}, L_{2} in $L(p, q)$ are said to be equivalent if there exists a preserving orientation homeomorphism φ of $L(p, q)$ such that $\varphi\left(L_{1}\right)=L_{2}$.
Two band diagrams represent equivalent links in $L(p, 1)$ if one of these diagrams can be transformed to another one by a finite sequence of moves depicted below.

Invariants

Let S be an arbitrary set. The map f from the set of all links to the set S is called S-valued knot invariant if for any two equivalent links L_{1}, L_{2} the values $f\left(L_{1}\right), f\left(L_{2}\right)$ are the same.

Invariants

Let S be an arbitrary set. The map f from the set of all links to the set S is called S-valued knot invariant if for any two equivalent links L_{1}, L_{2} the values $f\left(L_{1}\right), f\left(L_{2}\right)$ are the same.

Let $\pi: S^{3} \rightarrow L(p, q)$ be the universal cover map. Let f be an S-valued invariant for links in S^{3}.

Invariants

Let S be an arbitrary set. The map f from the set of all links to the set S is called S-valued knot invariant if for any two equivalent links L_{1}, L_{2} the values $f\left(L_{1}\right), f\left(L_{2}\right)$ are the same.

Let $\pi: S^{3} \rightarrow L(p, q)$ be the universal cover map. Let f be an S-valued invariant for links in S^{3}.

For a link L in $L(p, q)$ denote by \tilde{f} the map given by $\widetilde{f}(L)=f\left(\pi^{-1}(L)\right)$ is an invariant for links in $L(p, q)$.

Quandle for links in lens space

Let L be a link in $L(p, q)$.

Quandle for links in lens space

Let L be a link in $L(p, q)$.
$Q_{1}(L)=Q\left(\pi^{-1}(L)\right)$

Quandle for links in lens space

Let L be a link in $L(p, q)$.
$Q_{1}(L)=Q\left(\pi^{-1}(L)\right)$
$Q_{2}(L)$

Quandle for links in lens space

Let L be a link in $L(p, q)$.
$Q_{1}(L)=Q\left(\pi^{-1}(L)\right)$
$Q_{2}(L)$

Manfredi, 2018: $Q_{1}(L) \simeq Q_{2}(L)$.

Virtual quandle for links in lens spaces

Virtual quandle for links in lens spaces

Label the arcs:
Left by $x_{1}, x_{2}, \ldots, x_{n}$
Right by $y_{1}, y_{2}, \ldots, y_{n}$
Remaining by $z_{1}, z_{2}, \ldots, z_{m}$

Virtual quandle for links in lens spaces

Label the arcs:
Left by $x_{1}, x_{2}, \ldots, x_{n}$
Right by $y_{1}, y_{2}, \ldots, y_{n}$
Remaining by $z_{1}, z_{2}, \ldots, z_{k}$
To each right point associate the number ε_{i}
$\rightarrow \mid \varepsilon_{i}=1$
$\leftarrow \mid \varepsilon_{i}=-1$

Virtual quandle for links in lens spaces

- Generators: $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}, z_{1}, z_{2}, \ldots, z_{k}$;

Virtual quandle for links in lens spaces

- Generators: $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}, z_{1}, z_{2}, \ldots, z_{k}$;
- Inner relations: (i) identifications between some of x_{1}, \ldots, x_{n}, $y_{1}, \ldots y_{n}, z_{1}, \ldots, z_{k}$

Virtual quandle for links in lens spaces

- Generators: $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}, z_{1}, z_{2}, \ldots, z_{k}$;
- Inner relations: (i) identifications between some of x_{1}, \ldots, x_{n}, $y_{1}, \ldots y_{n}, z_{1}, \ldots, z_{k}$
(ii) $x * y=z$, where x, y, z are as on

Virtual quandle for links in lens spaces

- Generators: $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}, z_{1}, z_{2}, \ldots, z_{k}$;
- Inner relations: (i) identifications between some of x_{1}, \ldots, x_{n}, $y_{1}, \ldots y_{n}, z_{1}, \ldots, z_{k}$
(ii) $x * y=z$, where x, y, z are as on

- Boundary relations: $f\left(x_{i}\right)=y_{i}$ for $i=1, \ldots, n$ $y_{n}^{\varepsilon_{n}} y_{n-1}^{\varepsilon_{n-1}} \ldots y_{1}^{\varepsilon_{1}} \equiv 1$;

Virtual quandle for links in lens spaces

- Generators: $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}, z_{1}, z_{2}, \ldots, z_{k}$;
- Inner relations: (i) identifications between some of x_{1}, \ldots, x_{n}, $y_{1}, \ldots y_{n}, z_{1}, \ldots, z_{k}$
(ii) $x * y=z$, where x, y, z are as on

- Boundary relations: $f\left(x_{i}\right)=y_{i}$ for $i=1, \ldots, n$ $y_{n}^{\varepsilon_{n}} y_{n-1}^{\varepsilon_{n-1}} \ldots y_{1}^{\varepsilon_{1}} \equiv 1$;
- Splitting relations: $x f(x) \ldots f^{p-1}(x) \equiv 1$ for all $x \in F(X)$ $f^{p}(x)=x$ for all $x \in V Q(K)$.
$y_{n}^{\varepsilon_{n}} y_{n-1}^{\varepsilon_{n-1}} \ldots y_{1}^{\varepsilon_{1}} \equiv 1$

It means that for all $x \in Q$

$$
x *\left(y_{n}^{\varepsilon_{n}} y_{n-1}^{\varepsilon_{n-1}} \ldots y_{1}^{\varepsilon_{1}}\right)=x
$$

$y_{n}^{\varepsilon_{n}} y_{n-1}^{\varepsilon_{n-1}} \ldots y_{1}^{\varepsilon_{1}} \equiv 1$

It means that for all $x \in Q$

$$
\begin{gathered}
x *\left(y_{n}^{\varepsilon_{n}} y_{n-1}^{\varepsilon_{n-1}} \ldots y_{1}^{\varepsilon_{1}}\right)=x \\
\left.\left(\ldots\left(\left(x *^{\varepsilon_{n}} y_{n}\right) *^{\varepsilon_{n-1}} y_{n-1}\right) \ldots\right) *^{\varepsilon_{1}}\right) y_{1}=x
\end{gathered}
$$

$y_{n}^{\varepsilon_{n}} y_{n-1}^{\varepsilon_{n-1}} \ldots y_{1}^{\varepsilon_{1}} \equiv 1$

It means that for all $x \in Q$

$$
\begin{gathered}
x *\left(y_{n}^{\varepsilon_{n}} y_{n-1}^{\varepsilon_{n-1}} \ldots y_{1}^{\varepsilon_{1}}\right)=x \\
\left.\left(\ldots\left(\left(x *^{\varepsilon_{n}} y_{n}\right) *^{\varepsilon_{n-1}} y_{n-1}\right) \ldots\right) *^{\varepsilon_{1}}\right) y_{1}=x
\end{gathered}
$$

Here:
$x *{ }^{1} y=x * y$
$x *^{-1} y=S_{y}^{-1}(x)$, where $S_{x}: y \mapsto y * x$.

The main result

Theorem (Cattabriga-Nasybullov, 2019)

The virtual quandle $V Q(K)$ is an invariant for links in $L(p, 1)$.

Theorem (Cattabriga-Nasybullov, 2019)
The virtual quandle $V Q(K)$ is an invariant for links in $L(p, 1)$.
Better than $Q(L)=Q_{1}(L)=Q_{2}(L)$.

The main result

Theorem (Cattabriga-Nasybullov, 2019)

The virtual quandle $V Q(K)$ is an invariant for links in $L(p, 1)$.
Better than $Q(L)=Q_{1}(L)=Q_{2}(L)$.
Is able to distinguish links with equivalent lifts.

The main result

Theorem (Cattabriga-Nasybullov, 2019)

The virtual quandle $V Q(K)$ is an invariant for links in $L(p, 1)$.
Better than $Q(L)=Q_{1}(L)=Q_{2}(L)$.
Is able to distinguish links with equivalent lifts.
Easy computable from the diagram.

The main result

Theorem (Cattabriga-Nasybullov, 2019)

The virtual quandle $V Q(K)$ is an invariant for links in $L(p, 1)$.
Better than $Q(L)=Q_{1}(L)=Q_{2}(L)$.
Is able to distinguish links with equivalent lifts.
Easy computable from the diagram. Nice idea.

Example

Example

$$
\begin{aligned}
V Q(K)=\left\langle x_{1}, x_{2}, y_{1}, y_{2}\right| & x_{1}=y_{2}, x_{2}^{x_{1}}=y_{1} \\
& f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}, y_{2} y_{1} \equiv 1, \\
& \left.\forall x \quad x f(x) \ldots f^{p-1}(x) \equiv 1, \forall x \quad f^{p}(x)=x\right\rangle .
\end{aligned}
$$

Example

$V Q(K)=\left\langle x_{1}, x_{2}, y_{1}, y_{2}\right| x_{1}=y_{2}, x_{2}^{x_{1}}=y_{1}$,

$$
\begin{aligned}
& f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}, y_{2} y_{1} \equiv 1 \\
& \left.\forall x \quad x f(x) \ldots f^{p-1}(x) \equiv 1, \forall x \quad f^{p}(x)=x\right\rangle
\end{aligned}
$$

$x_{1}=y_{2}, x_{2}^{x_{1}}=y_{1} \Rightarrow$ delete y_{1}, y_{2} from the set of generators.

Example

$V Q(K)=\left\langle x_{1}, x_{2}, y_{1}, y_{2}\right| x_{1}=y_{2}, x_{2}^{x_{1}}=y_{1}$,

$$
\begin{aligned}
& f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}, y_{2} y_{1} \equiv 1 \\
& \left.\forall x \quad x f(x) \ldots f^{p-1}(x) \equiv 1, \forall x \quad f^{p}(x)=x\right\rangle
\end{aligned}
$$

$x_{1}=y_{2}, x_{2}^{x_{1}}=y_{1} \Rightarrow$ delete y_{1}, y_{2} from the set of generators.

$$
\begin{aligned}
V Q(K)=\left\langle x_{1}, x_{2}\right| & f\left(x_{1}\right)=x_{2}^{x_{1}}, f\left(x_{2}\right)=x_{1}, x_{2} x_{1} \equiv 1 \\
& \left.\forall x \quad x f(x) \ldots f^{p-1}(x) \equiv 1, \forall x \quad f^{p}(x)=x\right\rangle .
\end{aligned}
$$

$$
\begin{aligned}
V Q(K)=\left\langle x_{1}, x_{2}\right| & f\left(x_{1}\right)=x_{2}^{x_{1}}, f\left(x_{2}\right)=x_{1}, x_{2} x_{1} \equiv 1 \\
& \left.\forall x \quad x f(x) \ldots f^{p-1}(x) \equiv 1, \forall x \quad f^{p}(x)=x\right\rangle .
\end{aligned}
$$

$$
\begin{aligned}
V Q(K)=\left\langle x_{1}, x_{2}\right| & f\left(x_{1}\right)=x_{2}^{x_{1}}, f\left(x_{2}\right)=x_{1}, x_{2} x_{1} \equiv 1 \\
& \left.\forall x \quad x f(x) \ldots f^{p-1}(x) \equiv 1, \forall x \quad f^{p}(x)=x\right\rangle
\end{aligned}
$$

$f\left(x_{2}\right)=x_{1} \Rightarrow$ delete x_{1} from the set of generators.

$$
\begin{aligned}
V Q(K)=\left\langle x_{1}, x_{2}\right| & f\left(x_{1}\right)=x_{2}^{x_{1}}, f\left(x_{2}\right)=x_{1}, x_{2} x_{1} \equiv 1 \\
& \left.\forall x \quad x f(x) \ldots f^{p-1}(x) \equiv 1, \forall x \quad f^{p}(x)=x\right\rangle
\end{aligned}
$$

$f\left(x_{2}\right)=x_{1} \Rightarrow$ delete x_{1} from the set of generators.

$$
\begin{aligned}
V Q(K)=\langle x| & f^{2}(x)=x^{f(x)}, x f(x) \equiv 1 \\
& \left.\forall x \quad x f(x) \ldots f^{p-1}(x) \equiv 1, \forall x \quad f^{p}(x)=x\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
V Q(K)=\left\langle x_{1}, x_{2}\right| & f\left(x_{1}\right)=x_{2}^{x_{1}}, f\left(x_{2}\right)=x_{1}, x_{2} x_{1} \equiv 1 \\
& \left.\forall x \quad x f(x) \ldots f^{p-1}(x) \equiv 1, \forall x \quad f^{p}(x)=x\right\rangle .
\end{aligned}
$$

$f\left(x_{2}\right)=x_{1} \Rightarrow$ delete x_{1} from the set of generators.

$$
\begin{aligned}
V Q(K)=\langle x| & f^{2}(x)=x^{f(x)}, x f(x) \equiv 1 \\
& \left.\forall x \quad x f(x) \ldots f^{p-1}(x) \equiv 1, \forall x \quad f^{p}(x)=x\right\rangle
\end{aligned}
$$

$$
f^{2}(x)=x^{f(x)}, x f(x) \equiv 1 \Rightarrow f^{2}(x)=x
$$

$$
\begin{aligned}
V Q(K)=\left\langle x_{1}, x_{2}\right| & f\left(x_{1}\right)=x_{2}^{x_{1}}, f\left(x_{2}\right)=x_{1}, x_{2} x_{1} \equiv 1 \\
& \left.\forall x \quad x f(x) \ldots f^{p-1}(x) \equiv 1, \forall x \quad f^{p}(x)=x\right\rangle
\end{aligned}
$$

$f\left(x_{2}\right)=x_{1} \Rightarrow$ delete x_{1} from the set of generators.

$$
\begin{aligned}
V Q(K)=\langle x| & f^{2}(x)=x^{f(x)}, x f(x) \equiv 1 \\
& \left.\forall x \quad x f(x) \ldots f^{p-1}(x) \equiv 1, \forall x \quad f^{p}(x)=x\right\rangle
\end{aligned}
$$

$f^{2}(x)=x^{f(x)}, x f(x) \equiv 1 \Rightarrow f^{2}(x)=x$.
p is odd $\Rightarrow\left(f^{2}(x)=x, f^{p}(x)=x\right) \Rightarrow f(x)=x$

$$
\begin{aligned}
V Q(K)=\left\langle x_{1}, x_{2}\right| & f\left(x_{1}\right)=x_{2}^{x_{1}}, f\left(x_{2}\right)=x_{1}, x_{2} x_{1} \equiv 1 \\
& \left.\forall x \quad x f(x) \ldots f^{p-1}(x) \equiv 1, \forall x \quad f^{p}(x)=x\right\rangle
\end{aligned}
$$

$f\left(x_{2}\right)=x_{1} \Rightarrow$ delete x_{1} from the set of generators.

$$
\begin{aligned}
V Q(K)=\langle x| & f^{2}(x)=x^{f(x)}, x f(x) \equiv 1 \\
& \left.\forall x \quad x f(x) \ldots f^{p-1}(x) \equiv 1, \forall x \quad f^{p}(x)=x\right\rangle
\end{aligned}
$$

$f^{2}(x)=x^{f(x)}, x f(x) \equiv 1 \Rightarrow f^{2}(x)=x$.
p is odd $\Rightarrow\left(f^{2}(x)=x, f^{p}(x)=x\right) \Rightarrow f(x)=x$

$$
V Q(K)=\langle x \mid f(x)=x\rangle
$$

$$
\begin{aligned}
V Q(K)=\left\langle x_{1}, x_{2}\right| & f\left(x_{1}\right)=x_{2}^{x_{1}}, f\left(x_{2}\right)=x_{1}, x_{2} x_{1} \equiv 1 \\
& \left.\forall x \quad x f(x) \ldots f^{p-1}(x) \equiv 1, \forall x \quad f^{p}(x)=x\right\rangle
\end{aligned}
$$

$f\left(x_{2}\right)=x_{1} \Rightarrow$ delete x_{1} from the set of generators.

$$
\begin{aligned}
V Q(K)=\langle x| & f^{2}(x)=x^{f(x)}, x f(x) \equiv 1 \\
& \left.\forall x \quad x f(x) \ldots f^{p-1}(x) \equiv 1, \forall x \quad f^{p}(x)=x\right\rangle
\end{aligned}
$$

$$
f^{2}(x)=x^{f(x)}, x f(x) \equiv 1 \Rightarrow f^{2}(x)=x
$$

$$
p \text { is odd } \Rightarrow\left(f^{2}(x)=x, f^{p}(x)=x\right) \Rightarrow f(x)=x
$$

$$
V Q(K)=\langle x \mid f(x)=x\rangle
$$

p is even $\Rightarrow\left(f^{2}(x)=x \Rightarrow f^{p}(x)=x\right)$,
$\left(x f(x) \equiv 1 \Rightarrow x f(x) \ldots f^{p-1}(x) \equiv 1\right)$.

$$
\begin{aligned}
V Q(K)=\left\langle x_{1}, x_{2}\right| & f\left(x_{1}\right)=x_{2}^{x_{1}}, f\left(x_{2}\right)=x_{1}, x_{2} x_{1} \equiv 1 \\
& \left.\forall x \quad x f(x) \ldots f^{p-1}(x) \equiv 1, \forall x \quad f^{p}(x)=x\right\rangle
\end{aligned}
$$

$f\left(x_{2}\right)=x_{1} \Rightarrow$ delete x_{1} from the set of generators.

$$
\begin{aligned}
V Q(K)=\langle x| & f^{2}(x)=x^{f(x)}, x f(x) \equiv 1 \\
& \left.\forall x \quad x f(x) \ldots f^{p-1}(x) \equiv 1, \forall x \quad f^{p}(x)=x\right\rangle
\end{aligned}
$$

$$
f^{2}(x)=x^{f(x)}, x f(x) \equiv 1 \Rightarrow f^{2}(x)=x
$$

$$
p \text { is odd } \Rightarrow\left(f^{2}(x)=x, f^{p}(x)=x\right) \Rightarrow f(x)=x
$$

$$
V Q(K)=\langle x \mid f(x)=x\rangle
$$

p is even $\Rightarrow\left(f^{2}(x)=x \Rightarrow f^{p}(x)=x\right)$,
$\left(x f(x) \equiv 1 \Rightarrow x f(x) \ldots f^{p-1}(x) \equiv 1\right)$.

$$
V Q(K)=\left\langle x \mid f^{2}(x)=x, x f(x) \equiv 1\right\rangle .
$$

