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Links in S3

A n-component link L in S3 is an embedding of n disjoint circles

S1 to the 3-sphere S3.

Two links L1, L2 are said to be equivalent if there exists a

preserving orientation homeomorphism ϕ of S3 such that

ϕ(L1) = L2.

Knot recognition problem: Construct an algorithm which for two

given links L1, L2 says if these links are equivalent or not.

Let S be an arbitrary set. The map f from the set of all links to

the set S is called S-valued knot invariant if for any two equivalent

links L1, L2 the values f(L1), f(L2) are the same.
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Group of a link

f : L→ π1(S3 \ L) = G(L) is a link invariant.

Label the arcs by x1, x2, . . . , xn. Then G(L) has
Generators: labels on the arcs.

Relations: y−1xy = z near all crossings, where the labels are as on

G(L) = 〈x1, x2, x3 | x−1
3 x1x3 = x2, x

−1
1 x2x1 = x3, x

−1
2 x3x2 = x1〉
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Quandle of a link

Quandle Q is an algebraic system (Q, ∗) such that

1 x ∗ x = x for all x ∈ Q.
2 The map Sx : y 7→ y ∗ x is a bijection of Q.

3 (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) for all x, y, z ∈ Q.

→ Q(L)

The quandle Q(L) can be found in the following way

y

y

z

x

Generators: labels on the arcs.

Relations: x ∗ y = z near all crossings.
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Geometric de�nition of a quandle
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Quandle is an almost complete invariant

Theorem

Let L1, L2 be two links in S3. Then Q(L1) and Q(L2) are
isomorphic if and only if L1, L2 are weakly equivalent.

D. Joyce, A classifying invariant of knots, the knot

quandle

J. Pure Appl. Algebra, V. 23, N. 1, 1982, 37�65.

S. Matveev, Distributive groupoids in knot theory

Mat. Sb. (N.S.), V. 119(161), N. 1(9), 1982, 78�88.
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Virtual links

L. Kau�man, Virtual knot theory

European J. Combin., V. 20, N. 7, 1999, 663�690.
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Equivalent virtual links

Two virtual knot diagrams are called equivalent if one of these

diagrams can be transformed to another one by a �nite sequence of

moves depicted below.

V R4

V R1 V R2 V R3

R1 R2 R3
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Virtual links

Goussarov-Polyak-Viro, 2000: Let L1, L2 be two virtual link

diagrams which have only classical crossings. If these link diagrams

are equivalent as virtual diagrams, then they are equivalent as

classical knot diagrams.

Knot recognition problem: Construct an algorithm which for two

given virtual links L1, L2 says if these links are equivalent or not.

Let S be an arbitrary set. The map f from the set of all virtual

links to the set S is called S-valued knot invariant if for any two

equivalent links L1, L2 the values f(L1), f(L2) are the same.
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Quandle of a virtual link (L. Kau�man)

Q̃(L)

Label the long arcs by x1, x2, . . . , xn. Then Q̃(L) has
Generators: labels on the long arcs.

Relations: x ∗ y = z near all crossings, where the labels are as on

G(L) = 〈x1, x2, x3 | x−1
3 x1x3 = x2, x

−1
1 x2x1 = x3, x

−1
2 x3x2 = x1〉
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Virtual quandle of a knot (V. Manturov)

Virtual quandle V Q is an algebraic system (Q, ∗, f) such that

1 (Q, ∗) is a quandle.

2 The map x 7→ f(x) is bijective.
3 f(x ∗ y) = f(x) ∗ f(y).

V Q(L)

The virtual quandle V Q(L) can be found in the following way

Generators: labels on the semiarcs.

Relations: y = t, x ∗ y = z near classical crossings
t = f(y), z = f−1(x) near virtual crossings
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Lens spaces L(p, q)

Let p, q be coprime integers.

L(p, q) = B3/ ∼, where x ∼ f3 ◦ gp,q(x).

L(p, q) can be obtained by a p/q rational surgery on the unknot in

the 3-sphere S3.
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Links in lens spaces

A n-component link L in L(p, q) is an embedding of n disjoint

circles S1 to L(p, q).

D. Buck, M. Mauricio, Connect sum of lens spaces

surgeries: application to Hin recombination

Math. Proc. Cam. Philos. Soc., V. 150, 2011, 505�525.

S. Stevan, Torus knots in lens spaces and topological

strings

Ann. Henry Poincare, V. 16, 2015, 1937�1967.

12



Links in lens spaces

A n-component link L in L(p, q) is an embedding of n disjoint

circles S1 to L(p, q).

D. Buck, M. Mauricio, Connect sum of lens spaces

surgeries: application to Hin recombination

Math. Proc. Cam. Philos. Soc., V. 150, 2011, 505�525.

S. Stevan, Torus knots in lens spaces and topological

strings

Ann. Henry Poincare, V. 16, 2015, 1937�1967.

12



Links in lens spaces

A n-component link L in L(p, q) is an embedding of n disjoint

circles S1 to L(p, q).

D. Buck, M. Mauricio, Connect sum of lens spaces

surgeries: application to Hin recombination

Math. Proc. Cam. Philos. Soc., V. 150, 2011, 505�525.

S. Stevan, Torus knots in lens spaces and topological

strings

Ann. Henry Poincare, V. 16, 2015, 1937�1967.

12



Surgery link

−p/q
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Mixed link diagram

−p/q
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Punctured link diagram
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Punctured link diagram
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Band diagram
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Band diagram

Λ
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Links in lens spaces

Two links L1, L2 in L(p, q) are said to be equivalent if there exists

a preserving orientation homeomorphism ϕ of L(p, q) such that

ϕ(L1) = L2.

Two band diagrams represent equivalent links in L(p, 1) if one of
these diagrams can be transformed to another one by a �nite

sequence of moves depicted below.

R1 R2 R3
Λ ΛR4

Λ Λ

p
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Invariants

Let S be an arbitrary set. The map f from the set of all links to

the set S is called S-valued knot invariant if for any two equivalent

links L1, L2 the values f(L1), f(L2) are the same.

Let π : S3 → L(p, q) be the universal cover map.

Let f be an S-valued invariant for links in S3.

For a link L in L(p, q) denote by f̃ the map given by

f̃(L) = f(π−1(L)) is an invariant for links in L(p, q).
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Quandle for links in lens space

Let L be a link in L(p, q).

Q1(L) = Q(π−1(L))

Q2(L)

Manfredi, 2018: Q1(L) ' Q2(L).
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Virtual quandle for links in lens spaces

Λ
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Virtual quandle for links in lens spaces

Λ
x2

x1

xn

y1
y2

yn

Label the arcs:

Left by x1, x2, . . . , xn

Right by y1, y2, . . . , yn

Remaining by z1, z2, . . . , zm
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Virtual quandle for links in lens spaces

Λ
x2

x1

xn

y1
y2

yn

ε1
ε2

εn

Label the arcs:

Left by x1, x2, . . . , xn

Right by y1, y2, . . . , yn

Remaining by z1, z2, . . . , zk

To each right point associate the number εi

→ | εi = 1
← | εi = −1
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Virtual quandle for links in lens spaces

I Generators: x1, x2, . . . , xn, y1, y2, . . . , yn, z1, z2, . . . , zk;

I Inner relations: (i) identi�cations between some of x1, . . . , xn,

y1, . . . yn, z1, . . . , zk

(ii) x ∗ y = z, where x, y, z are as on

y

y

z

x
I Boundary relations: f(xi) = yi for i = 1, . . . , n
yεn

n y
εn−1
n−1 . . . y

ε1
1 ≡ 1;

I Splitting relations: xf(x) . . . fp−1(x) ≡ 1 for all x ∈ F (X)
fp(x) = x for all x ∈ V Q(K).
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yεn
n y

εn−1
n−1 . . . yε1

1 ≡ 1

It means that for all x ∈ Q

x ∗ (yεn
n y

εn−1
n−1 . . . y

ε1
1 ) = x

(. . . ((x ∗εn yn) ∗εn−1 yn−1) . . . )∗ε1)y1 = x

Here:

x ∗1 y = x ∗ y
x ∗−1 y = S−1

y (x), where Sx : y 7→ y ∗ x.

19
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The main result

Theorem (Cattabriga-Nasybullov, 2019)

The virtual quandle V Q(K) is an invariant for links in L(p, 1).

Better than Q(L) = Q1(L) = Q2(L).
Is able to distinguish links with equivalent lifts.

Easy computable from the diagram.

Nice idea.
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Example

x1

x2

y1

y2

V Q(K) = 〈x1, x2, y1, y2 | x1 = y2, x
x1
2 = y1,

f(x1) = y1, f(x2) = y2, y2y1 ≡ 1,
∀x xf(x) . . . fp−1(x) ≡ 1,∀x fp(x) = x〉.

x1 = y2, x
x1
2 = y1 ⇒ delete y1, y2 from the set of generators.

V Q(K) = 〈x1, x2 | f(x1) = xx1
2 , f(x2) = x1, x2x1 ≡ 1

∀x xf(x) . . . fp−1(x) ≡ 1,∀x fp(x) = x〉.
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V Q(K) = 〈x1, x2 | f(x1) = xx1
2 , f(x2) = x1, x2x1 ≡ 1

∀x xf(x) . . . fp−1(x) ≡ 1, ∀x fp(x) = x〉.

f(x2) = x1 ⇒ delete x1 from the set of generators.

V Q(K) = 〈x | f2(x) = xf(x), xf(x) ≡ 1,
∀x xf(x) . . . fp−1(x) ≡ 1, ∀x fp(x) = x〉.

f2(x) = xf(x), xf(x) ≡ 1 ⇒ f2(x) = x.
p is odd ⇒ (f2(x) = x, fp(x) = x)⇒ f(x) = x

V Q(K) = 〈x | f(x) = x〉.

p is even ⇒ (f2(x) = x ⇒ fp(x) = x),
(xf(x) ≡ 1 ⇒ xf(x) . . . fp−1(x) ≡ 1).

V Q(K) = 〈x | f2(x) = x, xf(x) ≡ 1〉.
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