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My talk will be very different from previous talks at this online conference. |
had great doubts and shared these doubts with Professor Andrei Vesnin.
Andrey, in turn, shared his doubts with Professor L. Kauffman .

Reaction of Prof. Kaufman was about the following:

| think that a good place to start would be the material about recombination
of vortex loops in  PHYSICAL REVIEW B 77, 214509 ,2008 "Kinetics of
a network of vortex loops in He Il and a theory of superfluid turbulence"

by Sergey K. Nemirovskii* This is very geometric and would be of
interest to everyone in the seminar. If he is willing to give more than
one talk, | would very much like to hear about Quantum Turbulence.
It is great that Sergey Nemirovskii is willing to speak in our seminar. | am
very much looking forward to his talks.



Following Professor Kauffman's suggestion, | decided, instead of a
separate talk, to combine the two talks today and present an extended
Introduction, which will essentially be a small review on quantum
turbulence. It seems to me that this topic will be (firstly) interesting for the
audience, and (secondly) will allow me to smoothly move on to the main
problem of the role of reconnections in the formation of quantum turbulence

PART | . Quantum Turbulence (overwiev).



First observation of the lambda transition.
Bubbly and calm boiling of helium. T=2.17 K




Two-fluid Landau model

From the point of view of hydrodynamics, the new phase of helium, the so-
called helium Il (He Il), can be represented as a mixture of two liquids

The two-fluid model

The system 1s a mixture of 1nviscid
superfluid and viscous normal flud.
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Counterflow. High thermal conductivity.
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TWO-FLUID MODEL explains many properties of superfluid helium. According to this
model, a sample of superfluid helium is made up of two interpenetrating fluids: *

a superfluid (blue), which flows without friction and, in one sense, has a tempera- V T ':»C Q
ture of absolute zero, and a normal fluid (red), which flows with normal friction and -
carries all the heat in the sample. A heater at one end of a channel of superfluid
helium causes a counterflow: normal fluid “created” at the heater flows toward
the other end of the channel while superfluid flows back in the opposite direction. V T C,t':




Superfluid (quantum) turbulence in He Il.
Vortex tangle.




Vortex filaments in He Il. Deterministic dynamics
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Reconnection of lines




What is it for??

A ) _ ,
: A A F -
-y ‘Q:}l!‘-:‘.\!‘ A
S HORM WP T 2
T Y PR
LIRS g AT
AR RSN\

= Jf_"'-‘. ..

- * T wo. d .l!l ;’
P Wi aand

Xy il
’,.'.; _!t’f.‘p
--- L e :“')




What is it for??

e |[nterest in quantum turbulence is motivated
by several things. First of all, quantum
turbulence as a part of the theory of
superfluidity is closely connected with other
problems of the general theory of quantum
fluids.



What is it for??

* One more, extremely important, line of
interest in quantum turbulence, currently
being intensively discussed, is the hope that
the use of the theory of stochastic vortex lines
will help to clarify the perennial problem of
classical turbulence (or at least to explain
some key features, like Kolmogorov spectra,
intermittency etc.).



What is it for??

One more justification for the interest in quantum
turbulence, attractive for theoreticians, is that the
theory of superfluid turbulence is an elegant and
challenging statistical problem used for the study of
the dynamics of a chaotic set of string-like objects,
with nonlinear and nonlocal interactions plus
reconnections resulting in the fusion or splitting of
vortex loops. The latter feature allows one to classify
guantum turbulence as a variant of string field
theory.
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What is it for??

es the great importance of superfluid
ence in the above-mentioned cases, we

woulc

like to point out that the theory of the

stochastic vortex tangle in quantum fluids is of
great interest and importance from the point
of view of general physics. This view is
justified by the existence in many physical

fields

of similar systems of highly disordered

sets of one-dimensional (1D) singularities.



Network of cosmic strings (D. Bennet, F. Bouchet,1989 )
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Dislocations In solids,
C. Deeb et al. (2004)




t=29s t=48s

Fig. 4. A coarsening sequence showing the strings visible in our 230-
wm-thick pressure cell containing K15 nematic liquid crystal, at¢ = 1.0, 1.7,
2.9, and 4.8 seconds after a pressure jump of AP = 4.7 MPa from an initally
isotropic state in equilibrium at approximately 33°C and 3.6 MPa. Thc
evolution of the string network shows self-similar or “scaling” behavior.
Each picture shows a region 360 pm in width.

Tangle of string-like
defects in nematic
liguid crystal

|.Chuang, R. Durrer,
N. Turok, B. Yorke,
(“Science”, 1991)



Natural light fields are threaded by lines of darkness. They are optical
vortices that extend as lines throughout the volume of the field.
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Topological defects in Bose Gas (N. Berloff, B. Svistunov, 2001)




Tangle of vortex filaments obtained in turbulent flow at

moderately high Reynolds (Vincent and Meneguzzi 1991).




About the main trends and key results.



Feynman's qualitative model and
Vinen phenomenological theory

ik

\r\_’j{:-- i ?\ W
dL 2 2
—=ay|v,|L**—B,L
dt
| O : r,_z = (v 2 -‘_2
L _(ﬁ) A ,15‘ (; (n‘) “ s |
R~&=/L712

L(t)

iL

jf?

A

To

B

|
I
I
|

Figure 9 Possible shape of the function £(¢)

™



Dynamics of heat pulses

Figurea 3 Appearance of the limiting profile of a second sound
pulse as fg increases: tg=3, 18, 30, 40, 50, 60, and 70s.
W=735Wem 2 7=1884K2
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FIG. 28. Schematic of the distortion of the temperature pulse
due to the interaction with is “own ” vortex lines (Nemirovskii
and Schmidt, 1990, Fig. 7). The dashed line represents the vor-
texless case when the pulse should be a “Burgers” triangle.

Figure 4 Secondary temperature fronts produced by heat pulses
in the presence of the vortex tangle. Oscillographs show temperature
versus time (10 ms/div.). Arrow indicates how temperature profiles
progressively develop as W increases. At the very beEinning of the
oscillographs, there are second sound shock waves'



15t numerical simulations (K.W. Schwarz 1988)
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lllustration to reconnection

{a) ¢t =-0.] (b) ¢ =00 {c) t=10.1

{d) t = =0.1 (e} t =00 (f)e=0.1
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Filamentary structure of classical turbulence.

Modeling by vortex filaments

e As absolutely alternative way to resolve this problem is to treat
turbulent features as consequence of dynamics of vortex filaments

Da Vinci observed turbulent flow in water and
(145 215 19) found that turbulence consisted of many vortices.

From book by Frisch (1995)

Leonardo Da Vinci



Filamentary structure of classical turbulence

ldea of modeling turbulence by discrete vortices on

experimental and numerical evidences of that the developed
turbulence has the vortex filamentary structure.

A. Vincent and M. Meneguzzi, Journal of Fluid Mechanics 225, 1 (1091).

TURBULENCE

Uriel Frisch

8.9.2 Statistical signature of vortex filaments: dog or tail?



technical applications

Figure 2.9: View of CERN. Lake Ginevra and the Alps. The circle denotes
the location of the LHC.



the magnets of the LHC are cooled
down to 1.9K with superfluid helium




Figure 2.10: The IRAS satellite.



PART Il . Recombination of Vortex Loops
In Hell and Theory of QuantumTurbulence



In general, the dynamics of the vortex tangle consists of two main
ingredients.

The first one (deterministic) is the motion of the elements of lines, due to
equations of the motion (Biot-Savart law, mutual friction etc.).

The second one is the (random) collisions (and merging), or self-
intersections (and splitting) of the vortex loops.

A, 1, 0) L B(,,1,,1)
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Up to now the numerical results remain the main source of
iInformation about this process. The scarcity of analytic
Investigations Is related to the incredible complexity of the
problem. Indeed we have to deal with a set of objects which do
not have a fixed number of elements, they can be born and die.
Thus, some analog of the secondary quantization method is
required with the difference that the objects (vortex loops)
themselves possess an infinite number of degree of freedom with
very involved dynamics. Clearly this problem can hardly be
resolved in the nearest future.

Some approach crucially reducing a number of degree of freedom
IS required.



Recombination

The full rate of reconnection N,.. ( number of events per one second per

unit volume) as a function of the vortex line density £ is estimated as
Nyee ~ £L

where s is quantum of circulation. Let us take for instance some typical
experiments on superfluid turbulence, with the counterflowing velocity of
order of 1cm/s. Under this conditions the value of the vortex line density
£ is about £ =~ 10* 1/em?. Then the full rate of reconnection N,.. is about
107collisions per second, or 10° collisions per each em of line. Let us take
a loop of length of ten of interline space, I ~ 107! em. This loop undergoes
(on average) 10’reconnections per one second, or in other words it exists
10~2s without reconnection (as a whole). The own vortex filament dynamics
(Kelvin waves dynamics) is much more slow process. For instances Kelvin
wave signal runs around the loop in time of order I* /x ~ l0seconds. Thus,
the characteristic time of Kelvin waves dynamics exceeds time of existence

of the loop by 10° times (!!!!).



Random walking structure

The structure of any loop is determined by numerous
previous reconnections. Therefore any loop consists of
small parts which "remember" previous collision. These
parts are uncorrelated since deterministic Kelvin wave
sighals do not have a time to propagate far enough.
Therefore loop has a structure of random walk (like
polymer chain).



Gaussian model of vortex loop

Main mathematical tool to descibe random walk is the Wiener distribution.
We use it in form, which allows to take into account possible anisotropy and

finite curvature.

P({s(¢,1)}) ocexp (— ] ] s*“(s}t)ﬁaﬁ(sjz')s’ﬁ(s,t)d&da') |

Here A,5(¢,€) is Mexican-hat like function width &,. The average loop can
be imagine as consisting of many arches with mean radius of curvature equal
& randomly (but smoothly) connected to each other. Quantity & is important
parameter of the approach. It plays a role of the "elementary step" in the
theory of polymer. It is low cut-of, theory does not describe scales smaller
then &, Beeing a Gaussian function the Wiener distribution allows readily to

calculate any average functional {A({s(¢,{)})).



Statement of problem

The only degree of freedom of random walk Is the
length | of loop.

Let us introduce the distribution function n(l,t) of
the density of a loop Iin the "space" of their
lengths. It is defined as the number of loops (per
unit volume) with lengths lying between | and
I+dl. Knowing quantity n(l,t) and statistics of
each personal loop we are able to evaluate
various properties of real vortex tangle



Evolution of n(l,t)

There are two main mechanisms for n(l,t) to be
changed. The first one is related to
deterministic motion (in fact to mutual
friction shrinking or inflating loops).

The second mechanism is related to random
processes of recombination. We take that
splitting of loop into two smaller loops

occurs with the rate of self-intersection
(number of events per unit time) Q
B(l 1,1 2,1). The merging of loop occurs

B(,.1, f) Q

.»4(535)

with the rate of collision A(1_1,1_2,1).



In view of what has been exposed above we can directly write out the
master ”kinetic” equation for rate of change the function n(l,t)
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Evaluation of rates of self-
Intersection and collision

Let us take vector S connecting two
points of the loop. Event S=0 implies
self-intersection of line with :
consequent reconnection and
splitting of the loop. To find the rate
of such events we have to find how S0 —
often 3-component function S of 3
arguments vanishes. In other words $E, £,.1)=5E, .0 —SE.0)
we have to find number of zeroes of
fluctuating function S.




Coefficients A(l_ 1,1 2,) and B(l 1,1 2,)

XY, Z)
> ‘*“}“ 3(E. £1.7)

Here XY, Z are the components of vector 5(&;,&;,t). If, further to introduces additional

0(8s(&2,t, &1, 1))

“—%a

constraint (£, — & — ;) and integrate over d€;df; we obtain the rate of self-crossing of line
of full length [ and breaking 1t down 1t into pieces [; and [ — [;. In addition we have to do

averaging over all possible fluctuating configurations.
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By use of a special procedure (Zakharov ansatz) it can be shown that kinetic
equation without "deterministic terms" has stationary power-like solution.

n(l) =C I°
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] 4425 / 4425
‘//fl(gl, J-;_}._ J)H—(El)ﬂ-(Eg) (1 — (a) — (g) ) G(E — 51 — Eg)dfldfg
l s+3/2 I 5+3/2

For s = —5/2 both expressions in parentheses coincide with argumemts of
delta functions, thus the integrands include expressions of type ()d(x) and
these mtegrals vanish.



Flux of length (energy) in space of
the loops sizes

Distribution of loops over their lengths n(l) = C [7%/2 was frequently dis-
cussed early for various systems of one-dimensional singularities, however for
thermodynamical equilibrium. Here we have a nonequilibrium state, with the
flux of length (energy) in space of the loops sizes. The term "flux” here means
just the redistribution of length among the loops due to reconnections.

L(t) = /E «n(l,t)dl

ac(t)  aP(l)
a o al

P = 6.27C%b,,,V; — 2.T7Cb, Vi€, %2

= 0.




Low temperature case: Direct cascade

* Negative flux appears when break
down of loops prevails and cascade-like
process of generation of smaller and
smaller loops forms. There exists a
number of mechanisms of
disappearance of rings on very small
scales. It can be e.g. acoustic radiation,
collapse of lines, Kelvin waves etc.

Thus, In this case one can observe
well-developed superfluid
turbulence.




High temperature case: Inverse cascade

e The case with inverse Is less clear. _

Inverse cascade implies the cascade-like -

process of generation of larger and -','!!'-.r'

larger loops. Unlike previous case of T A
direct cascade, there is no apparent a
mechanism for disappearance of very #_,__ —
large loops. The probable scenario is ] )

that parts of large loops are pinned on B ’L
the walls. Finally a state with few | =2 -l |
lines stretching from wall to wall A __'

with poor dynamics and rare E——

events Is realized, this is a
degenerated state of the vortex
tanqgle.




Mean curvature and interline space

In steady case the positive flux of length exactly compensates the negative
flux. This allows to find constant C and evaluate L

o 1
£=/ L« n(l)dl =

227
o 262§0

R~&=L1

Result is very remarkable. The idea that interline space § = L71/2 ~ ¢y&, is
of order of mean radius of curvature was launched by Schwarz. Earlier it was
confirmed only in numerical simulations. The theoretical and numerical values
of ¢y agree within 10%.

e = e




The Rate of Reconnection.The full rate of reconnection :"';-T,.E,,: can be
evaluated directly from master kinetic equation. Indeed, this equation describes
change of n(l) due to reconnection events. It takes into account sign of events,
depending on whether the loop of size [ appears or dies in result of reconnection.
Therefore, if we take all terms in collision integral with the plus sign we obtain
the total number of reconnections (in interval interval di).

[ [ Ats.t.Dnt)n0) (1 T (i)m ; (é)m) (1 — 1y — Lo)dlydl
+ff/ﬂ[.!1,.!g,£]n{.!] (1_|_ (£)5+3;’2+ (é)Ser) §(1 — 13 —I3)dlqdlg

Evaluating N.oo for s = —5/2 we obtain

_ - 2
N, = 16(bCyvip + bnCvip) _ C.. xL5/2

3 £

Where C,... one more constant running in interval 0.1 — 0.5, That results also
agrees with the recent numerical investigation by Barenghi and Samuels.




Conclusion (to Part Il)

We demonstrated that the dynamics of vortex tangle is
satisfactorily described in language of the kinetics of
reconnecting (splitting and merging) Brownian loops.

The intrinsic (deterministic) dynamics of vortex lines is
secondary in value.

Thus, the optimistic view Is such that by varying the
characteristics of the Brownian loop, one can describe
the variety of phenomena of quantum turbulence. The
pessimistic point of view is that this is impossible and
the full solution of the problem requires something like
string field theory for nonlinear strings.

A pessimist is a well informed optimist.




Thank You !
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