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Topological cascade from head-on collision of vortex rings

(Lim & Nickels, Nature 357 1992)



Production and evolution of a trefoil vortex knot in water      

(Klecker & Irvine, Nature Physics 9 2013)



Anti-parallel reconnection of vortex tubes in water       

(Alekseenko et al., JETP Letters 7 2016)
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� Biot-Savart induction law:

… asymptotic theory …

� Azimuthal contribution:

(i) parallel vorticity

(Josserand &
Rossi 2007)
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Observation of anti-parallel reconnection

(Alekseenko et al., JETP Letters 7 2016)



Observation of anti-parallel reconnection

DNS of vorticity iso-surfaces at 40% of maximum initial vorticity
(Hussain & Duraisamy, Phys Fluids 23 2011)

(Alekseenko et al., JETP Letters 7 2016)
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Writhe conservation and helicity change under reconnection

� Theorem (Laing et al. 2015). The writhe Wr of 2 disjoint, 
oriented, polygonal curves A and B is conserved under anti-

parallel reconnection of A and B :                  .  Wr(A∪B) = Wr(A#B)

:

Α

Β

Α

Β

Corollary 2. Since under anti-parallel

reconnection of A and B total torsion
is conserved, any change in helicity is
solely due to a change in intrinsic 
twist.  (Van Rees et al. 2012) 

Corollary 1. If 2 vortex tubes of axes Α and Β have same
circulation, then the writhe helicity is
conserved under anti-parallel reconnection.
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Cooper et al. (Nature Sci Rep 2019)

Taylor & Dennis
(Nature Comm 2016)
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HOMFLYPT polynomial from self-linking 

� Theorem (Liu & Ricca, JFM 2015). If  denotes a vortex 

knot of axis C and helicity         , then 

satisfies (under a plausible statistical hypothesis) the skein 

relations of the HOMFLYPT polynomial               .    

H  = H (K )

appropriately rescaled  

Wr∝Tw      

f (Tw)�� �� = g(Wr)

t  = h(a, z)  : knots and links are ìframedî.

.

� HOMFLYPT variables in terms of writhe and twist: 

,            . 

Hence, from the HOMFLYPT P2 skein relation, we have:  

a = f (Tw)         z  = g(Wr)

K

� Reduction of HOMFLYPT PK(a,z) to Jones VK(t) :
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� Theorem (Liu & Ricca 2016). HOMFLYPT computation of 

PT(2,n) generates for decreasing n a monotonically decreasing

sequence of numerical values given by

,

where       and       are known functions of τ and ω , 

with initial conditions PT(2,3) and PT(2,2) .

Bq τ,ω( )Aq τ,ω( )
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…

P = 1P = 1.11

P = 0.48 P = 0.23

Vortex link cascade in BECs (Zuccher & Ricca 2017)
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� Optimal path to cascade?  

T (2, 5)

� Adapted HOMFLYPT as best quantifier of cascade processes:  
ñ provides monotonic behavior consistently;
ñ numerical values robust and reliable markers for diagnostics;
ñ ,          (except for the unknot).   

Conclusions and outlook
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