Topologicall cascade through vortex reconnection

Renzo L. Ricca

Department of Mathematics \& Applications, U. Milano-Bicocca, Italy renzo.ricca@unimib.it

Topologicall cascade through vortex reconnection

Renzo L. Ricca
Department of Mathematics \& Applications, U. Milano-Bicocca, Italy renzo.ricca@unimib.it

Motivations

- Determine relationships between structural complexity of physical knots and energy.
- Quantify energy/helicity transfers in dynamical systems.

Topologicall cascade through vortex reconnection

Renzo L. Ricca

Department of Mathematics \& Applications, U. Milano-Bicocca, Italy renzo.ricca@unimib.it

Motivations

- Determine relationships between structural complexity of physical knots and energy.
- Quantify energy/helicity transfers in dynamical systems.

- Knot polynomials as new physical invariants to quantify topological complexity.
- Extend and apply new topological techniques to study complex systems.

Topologicall cascade through vortex reconnection

Renzo L. Ricca

Department of Mathematics \& Applications, U. Milano-Bicocca, Italy renzo.ricca@unimib.it

Motivations

- Determine relationships between structural complexity of physical knots and energy.
- Quantify energy/helicity transfers in dynamical systems.

- Knot polynomials as new physical invariants to quantify topological complexity.
- Extend and apply new topological techniques to study complex systems.

Fluid structures in classical turbulence
Werle, ONERA 1974
(Van Dyke 1982)

Fluid structures in classical turbulence

Vortex knots as tubular embeddings
Let $T=C \otimes S$ and $V=V(T):$
$T \hookrightarrow K$ in \mathbb{R}^{3}

Vortex knots as tubular embeddings
Let $T=C \otimes S$ and $V=V(T):$

$$
T \hookrightarrow K \text { in } \mathbb{R}^{3}
$$

Physical embedding:

$$
K \equiv \operatorname{supp}(\boldsymbol{\omega})
$$

by a standard foliation $\mathcal{F}_{\left\{p_{i}, q_{i}\right\}}$ of the $\boldsymbol{\omega}$-lines, such that $\boldsymbol{\omega} \cdot \hat{\boldsymbol{\nu}}=0$ on ∂T.

Vortex knots as tubular embeddings

$$
\text { Let } T=C \otimes S \text { and } V=V(T)
$$

$$
T \hookrightarrow K \text { in } \mathbb{R}^{3}
$$

Physical embedding:

$$
K \equiv \operatorname{supp}(\boldsymbol{\omega})
$$

by a standard foliation $\mathcal{F}_{\left\{p_{i}, q_{i}\right\}}$ of the ω-lines, such that $\boldsymbol{\omega} \cdot \hat{\boldsymbol{\nu}}=0$ on ∂T.

- Definition: A vortex tangle \mathcal{T}^{\prime} is a smooth immersion in \mathbb{R}^{3} of finitely many disjoint standard tubular knots K_{i}, such that

$$
\bigcup K_{i} \equiv \operatorname{supp}(\boldsymbol{\omega}) \quad(i=1, \ldots, N)
$$

Vortex knots as tubular embeddings

$$
\text { Let } T=C \otimes S \text { and } V=V(T)
$$

$$
T \hookrightarrow K \text { in } \mathbb{R}^{3}
$$

Physical embedding:

$$
K \equiv \operatorname{supp}(\boldsymbol{\omega})
$$

by a standard foliation $\mathcal{F}_{\left\{p_{i}, q_{i}\right\}}$ of the $\boldsymbol{\omega}$-lines, such that $\boldsymbol{\omega} \cdot \hat{\boldsymbol{\nu}}=0$ on ∂T.

- Definition: A vortex tangle \mathcal{T} is a smooth immersion in \mathbb{R}^{3} of finitely many disjoint standard tubular knots K_{i}, such that

$$
\bigcup K_{i} \equiv \operatorname{supp}(\boldsymbol{\omega}) \quad(i=1, \ldots, N)
$$

- Ideal evolution: circulation and topology preserved

$$
\Gamma_{i}=\int_{S_{i}} \omega \cdot \hat{\boldsymbol{\lambda}} d S=\text { cst. } ; \text { knot type } K_{i} \text { conserved. }
$$

Kinetic helicity and linking numbers

- Kinetic helicity:

$$
H(\mathcal{T})=\int_{\mathcal{T}} \mathbf{u} \cdot \boldsymbol{\omega} d V
$$

Kinetic helicity and linking numbers

- Kinetic helicity:

$$
H(\mathcal{T})=\int_{\mathcal{T}} \mathbf{u} \cdot \boldsymbol{\omega} d V
$$

- Theorem (Moffatt 1969; Moffatt \& Ricca 1992). Let \mathcal{T} be a vortex tangle in an ideal fluid. Then, we have:

$$
H=\sum_{i}\left(\Gamma_{i}^{2} S L_{i}+\sum_{j \neq i} \Gamma_{i} \Gamma_{j} L k_{i j}\right) \quad\left\{\begin{array}{l}
S L_{i}=S L\left(K_{i}\right) \\
L k_{i j}=L k\left(C_{i}, C_{j}\right)
\end{array}\right.
$$

Kinetic helicity and linking numbers

- Kinetic helicity:

$$
H(\mathcal{T})=\int_{\mathcal{T}} \mathbf{u} \cdot \boldsymbol{\omega} d V=\Gamma \sum_{i} \oint_{C_{i}} \mathbf{u} \cdot d \mathbf{l}
$$

- Theorem (Moffatt 1969; Moffatt \& Ricca 1992). Let \mathcal{T} be a vortex tangle in an ideal fluid. Then, we have:

$$
H=\sum_{i}\left(\Gamma_{i}^{2} S L_{i}+\sum_{j \neq i} \Gamma_{i} \Gamma_{j} L k_{i j}\right) \quad\left\{\begin{array}{l}
S L_{i}=S L\left(K_{i}\right) \\
L k_{i j}=L k\left(C_{i}, C_{j}\right)
\end{array}\right.
$$

Linking number (Gauss): $L k_{12}=L k\left(C_{1}, C_{2}\right)$

Kinetic helicity and linking numbers

- Kinetic helicity:

$$
H(\mathcal{T})=\int_{\mathcal{T}} \mathbf{u} \cdot \boldsymbol{\omega} d V=\Gamma \sum_{i} \oint_{C_{i}} \mathbf{u} \cdot d \mathbf{l}
$$

- Theorem (Moffatt 1969; Moffatt \& Ricca 1992). Let \mathcal{T} be a vortex tangle in an ideal fluid. Then, we have:

$$
H=\sum_{i}\left(\Gamma_{i}^{2} S L_{i}+\sum_{j \neq i} \Gamma_{i} \Gamma_{j} L k_{i j}\right)\left\{\begin{array}{l}
S L_{i}=S L\left(K_{i}\right) \\
L k_{i j}=L k\left(C_{i}, C_{j}\right)
\end{array}\right.
$$

Linking number (Gauss): $L k_{12}=-1$

Kinetic helicity and linking numbers

- Kinetic helicity:

$$
H(\mathcal{T})=\int_{\mathcal{T}} \mathbf{u} \cdot \boldsymbol{\omega} d V=\Gamma \sum_{i} \oint_{C_{i}} \mathbf{u} \cdot d \mathbf{l}
$$

- Theorem (Moffatt 1969; Moffatt \& Ricca 1992). Let \mathcal{T} be a vortex tangle in an ideal fluid. Then, we have:

$$
H=\sum_{i}\left(\Gamma_{i}^{2} S L_{i}+\sum_{j \neq i} \Gamma_{i} \Gamma_{j} L k_{i j}\right) \quad\left\{\begin{array}{l}
S L_{i}=S L\left(K_{i}\right) \\
L k_{i j}=L k\left(C_{i}, C_{j}\right)
\end{array}\right.
$$

Linking number (Gauss): $L k_{12}=-1$
Self-linking number (Călugăreanu-White):

$$
S L(K)=W r(C)+T w\left(C, C^{*}\right)
$$

writhing total twist number number

Kinetic helicity and linking numbers

- Kinetic helicity:

$$
H(\mathcal{T})=\int_{\mathcal{T}} \mathbf{u} \cdot \boldsymbol{\omega} d V=\Gamma \sum_{i} \oint_{C_{i}} \mathbf{u} \cdot d \mathbf{l}
$$

- Theorem (Moffatt 1969; Moffatt \& Ricca 1992). Let \mathcal{T} be a vortex tangle in an ideal fluid. Then, we have:

$$
H=\sum_{i}\left(\Gamma_{i}^{2} S L_{i}+\sum_{j \neq i} \Gamma_{i} \Gamma_{j} L k_{i j}\right) \quad\left\{\begin{array}{l}
S L_{i}=S L\left(K_{i}\right) \\
L k_{i j}=L k\left(C_{i}, C_{j}\right)
\end{array}\right.
$$

Linking number (Gauss): $L k_{12}=-1$
Self-linking number (Călugăreanu-White):

$$
S L(K)=W r(C)+T w\left(C, C^{*}\right)
$$

$$
T w\left(C, C^{*}\right)
$$

Topological cascade from head-on collision of vortex rings

(Klecker \& Irvine, Nature Physics 9 2013)

(Alekseenko et al., JETP Letters 7 2016)

Mechanics of vortex reconnection

- Biot-Savart induction law:

$$
\mathbf{u}_{\mathrm{R}}(\mathrm{x})=\frac{1}{4 \pi} \int_{\Omega} \frac{\boldsymbol{\omega}\left(\mathrm{x}^{*}\right) \times\left(\mathrm{x}-\mathrm{x}^{*}\right)}{\left|\mathrm{x}-\mathrm{x}^{*}\right|^{3}} \mathrm{~d} V^{*}
$$

Mechanics of vortex reconnection

- Biot-Savart induction law:

$$
\begin{aligned}
\mathbf{u}_{\mathrm{R}}(\mathbf{x}) & =\frac{1}{4 \pi} \int_{\Omega} \frac{\boldsymbol{\omega}\left(\mathrm{x}^{*}\right) \times\left(\mathrm{x}-\mathrm{x}^{*}\right)}{\left|\mathrm{x}-\mathrm{x}^{*}\right|^{3}} \mathrm{~d} V^{*}=\ldots \text { asymptotic theory } \ldots \\
& =\frac{\Gamma}{2 \pi \rho} \hat{\mathbf{e}}_{\theta}+\frac{\Gamma}{4 \pi R}\left(\log \frac{L}{\rho}\right) \hat{\mathbf{b}}+\mathbf{U}_{\text {finite }}
\end{aligned}
$$

Mechanics of vortex reconnection

- Biot-Savart induction law:

$$
\begin{aligned}
\mathbf{u}_{\mathrm{R}}(\mathbf{x}) & =\frac{1}{4 \pi} \int_{\Omega} \frac{\boldsymbol{\omega}\left(\mathrm{x}^{*}\right) \times\left(\mathrm{x}-\mathrm{x}^{*}\right)}{\left|\mathbf{x}-\mathrm{x}^{*}\right|^{3}} \mathrm{~d} V^{*}=\ldots \text { asymptotic theory } \ldots \\
& =\frac{\Gamma}{2 \pi \rho} \hat{\mathbf{e}}_{\theta}+\frac{\Gamma}{4 \pi R}\left(\log \frac{L}{\rho}\right) \hat{\mathbf{b}}+\mathbf{U}_{\text {finite }} \\
\mathbf{u}_{\mathrm{R}}(\mathbf{x}) & \sim \frac{\Gamma}{2 \pi \rho} \hat{\mathbf{e}}_{\theta}+A c \hat{\mathbf{b}}=\mathbf{u}_{\theta}+\mathbf{u}_{b}
\end{aligned}
$$

- Biot-Savart induction law:

$$
\begin{aligned}
\mathbf{u}_{\mathrm{R}}(\mathbf{x}) & =\frac{1}{4 \pi} \int_{\Omega} \frac{\boldsymbol{\omega}\left(\mathbf{x}^{*}\right) \times\left(\mathbf{x}-\mathbf{x}^{*}\right)}{\left|\mathbf{x}-\mathbf{x}^{*}\right|^{3}} \mathrm{~d} V^{*}=\ldots \text { asymptotic theory } \ldots \\
& =\frac{\Gamma}{2 \pi \rho} \hat{\mathbf{e}}_{\theta}+\frac{\Gamma}{4 \pi R}\left(\log \frac{L}{\rho}\right) \hat{\mathbf{b}}+\mathbf{U}_{\text {finite }} \\
\mathbf{u}_{\mathrm{R}}(\mathbf{x}) & \sim \frac{\Gamma}{2 \pi \rho} \hat{\mathbf{e}}_{\theta}+A c \hat{\mathbf{b}}=\mathbf{u}_{\theta}+\mathbf{u}_{b}
\end{aligned}
$$

- Biot-Savart induction law:

$$
\begin{aligned}
\mathbf{u}_{\mathrm{R}}(\mathbf{x}) & =\frac{1}{4 \pi} \int_{\Omega} \frac{\boldsymbol{\omega}\left(\mathbf{x}^{*}\right) \times\left(\mathbf{x}-\mathbf{x}^{*}\right)}{\left|\mathbf{x}-\mathbf{x}^{*}\right|^{3}} \mathrm{~d} V^{*}=\ldots \text { asymptotic theory } \ldots \\
& =\frac{\Gamma}{2 \pi \rho} \hat{\mathbf{e}}_{\theta}+\frac{\Gamma}{4 \pi R}\left(\log \frac{L}{\rho}\right) \hat{\mathbf{b}}+\mathbf{U}_{\text {finite }} \\
\mathbf{u}_{\mathrm{R}}(\mathbf{x}) & \sim \frac{\Gamma}{2 \pi \rho} \hat{\mathbf{e}}_{\theta}+A c \hat{\mathbf{b}}=\mathbf{u}_{\theta}+\mathbf{u}_{b}
\end{aligned}
$$

- Biot-Savart induction law:

$$
\mathbf{u}_{\mathrm{R}}(\mathbf{x})=\frac{1}{4 \pi} \int_{\Omega} \frac{\boldsymbol{\omega}\left(\mathbf{x}^{*}\right) \times\left(\mathbf{x}-\mathbf{x}^{*}\right)}{\left|\mathbf{x}-\mathrm{x}^{*}\right|^{3}} \mathrm{~d} V^{*}=\ldots \text { asymptotic theory } \ldots
$$

$$
=\frac{\Gamma}{2 \pi \rho} \hat{\mathbf{e}}_{\theta}+\frac{\Gamma}{4 \pi R}\left(\log \frac{L}{\rho}\right) \hat{\mathbf{b}}+\mathbf{U}_{\text {finite }}
$$

$$
\mathbf{u}_{\mathrm{R}}(\mathbf{x}) \sim \frac{\Gamma}{2 \pi \rho} \hat{\mathbf{e}}_{\theta}+A c \hat{\mathbf{b}}=\mathbf{u}_{\theta}+\mathbf{u}_{b}
$$

- Azimuthal contribution: \mathbf{u}_{θ} (i) parallel vorticity

- Biot-Savart induction law:

$$
\mathbf{u}_{\mathrm{R}}(\mathbf{x})=\frac{1}{4 \pi} \int_{\Omega} \frac{\boldsymbol{\omega}\left(\mathbf{x}^{*}\right) \times\left(\mathbf{x}-\mathbf{x}^{*}\right)}{\left|\mathbf{x}-\mathrm{x}^{*}\right|^{3}} \mathrm{~d} V^{*}=\ldots \text { asymptotic theory } \ldots
$$

$$
=\frac{\Gamma}{2 \pi \rho} \hat{\mathbf{e}}_{\theta}+\frac{\Gamma}{4 \pi R}\left(\log \frac{L}{\rho}\right) \hat{\mathbf{b}}+\mathbf{U}_{\text {finite }}
$$

$$
\mathbf{u}_{\mathrm{R}}(\mathbf{x}) \sim \frac{\Gamma}{2 \pi \rho} \hat{\mathbf{e}}_{\theta}+A c \hat{\mathbf{b}}=\mathbf{u}_{\theta}+\mathbf{u}_{b}
$$

- Azimuthal contribution: \mathbf{u}_{θ}
(i) parallel vorticity

(Josserand \& Rossi 2007)

Mechanics of vortex reconnection: pre-reconnection stage

- Azimuthal contribution: \mathbf{u}_{θ}
(i) anti-parallel vorticity

Mechanics of vortex reconnection: pre-reconnection stage

- Azimuthal contribution: \mathbf{u}_{θ}
(i) anti-parallel vorticity

Mechanics of vortex reconnection: pre-reconnection stage

- Azimuthal contribution: \mathbf{u}_{θ}
(i) anti-parallel vorticity

$$
\mathbf{u}_{P}=\mathbf{u}_{\theta 1}+\mathbf{u}_{\theta 2}=\frac{\Gamma}{2 \pi \rho} \hat{\mathbf{e}}_{\theta 1}+\frac{\Gamma}{2 \pi \rho} \hat{\mathbf{e}}_{\theta 2}
$$

- Proof of anti-parallel configuration:
apply Bernoulli theorem at P : $\quad p_{P}+\frac{1}{2}\left|\mathbf{u}_{P}\right|^{2}=$ constant

Mechanics of vortex reconnection: pre-reconnection stage

- Azimuthal contribution: \mathbf{u}_{θ}
(i) anti-parallel vorticity

$$
\mathbf{u}_{P}=\mathbf{u}_{\theta 1}+\mathbf{u}_{\theta 2}=\frac{\Gamma}{2 \pi \rho} \hat{\mathbf{e}}_{\theta 1}+\frac{\Gamma}{2 \pi \rho} \hat{\mathbf{e}}_{\theta 2}
$$

- Proof of anti-parallel configuration:
apply Bernoulli theorem at $P: \quad p_{P}+\frac{1}{2}\left|\mathbf{u}_{P}\right|^{2}=$ constant

$$
\left|\mathbf{u}_{P}\right|^{2}=\left|\mathbf{u}_{\theta 1}+\mathbf{u}_{\theta 2}\right|^{2}=2\left(\frac{\Gamma}{2 \pi \rho}\right)^{2}(1+\cos \alpha): \quad\left|\mathbf{u}_{P}\right|_{\max }^{2} \Longleftrightarrow \alpha=0
$$

Observation of anti-parallel reconnection

(Alekseenko et al., JETP Letters 7 2016)

Observation of anti-parallel reconnection

(Alekseenko et al., JETP Letters 7 2016)

$t^{*}=0$

$t^{*}=1.61$

$t^{*}=2.07$

$t^{*}=2.77$

DNS of vorticity iso-surfaces at 40\% of maximum initial vorticity (Hussain \& Duraisamy, Phys Fluids 23 2011)

Writhe conservation and helicity change under reconnection
Consider anti-parallel reconnection by polygonal curves:

Writhe conservation and helicity change under reconnection
Consider anti-parallel reconnection by polygonal curves:

Writhe conservation and helicity change under reconnection
Consider anti-parallel reconnection by polygonal curves:

Writhe conservation and helicity change under reconnection
Consider anti-parallel reconnection by polygonal curves:

Writhe conservation and helicity change under reconnection
Consider anti-parallel reconnection by polygonal curves:

- Theorem (Laing et al. 2015). The writhe Wr of 2 disjoint, oriented, polygonal curves A and B is conserved under antiparallel reconnection of A and $B: \operatorname{Wr}(A \cup B)=\operatorname{Wr}(A \# B)$.

Writhe conservation and helicity change under reconnection
Consider anti-parallel reconnection by polygonal curves:

- Theorem (Laing et al. 2015). The writhe Wr of 2 disjoint, oriented, polygonal curves A and B is conserved under antiparallel reconnection of A and $B: W r(A \cup B)=W r(A \# B)$.

Corollary 1. If 2 vortex tubes of axes A and B have same circulation, then the writhe helicity is conserved under anti-parallel reconnection.

Writhe conservation and helicity change under reconnection
Consider anti-parallel reconnection by polygonal curves:

- Theorem (Laing et al. 2015). The writhe Wr of 2 disjoint, oriented, polygonal curves A and B is conserved under antiparallel reconnection of A and $B: W r(A \cup B)=W r(A \# B)$.

Corollary 1. If 2 vortex tubes of axes A and B have same circulation, then the writhe helicity is conserved under anti-parallel reconnection.

Corollary 2. Since under anti-parallel reconnection of A and B total torsion is conserved, any change in helicity is solely due to a change in intrinsic twist.

Vortex defects in condensates and superfluids

Taylor \& Dennis
(Nature Comm 2016)

Vortex defects in condensates and superfluids

Taylor \& Dennis
(Nature Comm 2016)

(c)

Cooper et al. (Nature Sci Rep 2019)

Tackling structural complexity by knot polynomials

- Helicity and linking number limitations:
(i) $H(K)=f\left(S L_{i}, L k_{i j} ; \Gamma_{i}\right)$;

Tackling structural complexity by knot polynomials

- Helicity and linking number limitations:
(i) $H(K)=f\left(S L_{i}, L k_{i j} ; \Gamma_{i}\right)$;
(ii) $L k_{i j}=0, \sum_{i \neq j} L k_{i j}=0$.

(Maxwell 1867)

Tackling structural complexity by knot polynomials

- Helicity and linking number limitations:
(i) $H(K)=f\left(S L_{i}, L k_{i j} ; \Gamma_{i}\right)$;
(ii) $L k_{i j}=0, \sum_{i \neq j} L k_{i j}=0$.

Knot polynomials?

Tackling structural complexity by knot polynomials

- Helicity and linking number limitations:
(i) $H(K)=f\left(S L_{i}, L k_{i j} ; \Gamma_{i}\right)$;
(ii) $L k_{i j}=0, \sum_{i \neq j} L k_{i j}=0$.
- HOMFLYPT polynomial $P(K)=P_{K}(a, z)$:

Tackling structural complexity by knot polynomials

- Helicity and linking number limitations:
(i) $H(K)=f\left(S L_{i}, L k_{i j} ; \Gamma_{i}\right)$;
(ii) $L k_{i j}=0, \sum_{i \neq j} L k_{i j}=0$.
- HOMFLYPT polynomial $P(K)=P_{K}(a, z)$:
(P1) $\quad P(\mathrm{O})=1$

$$
\begin{equation*}
\text { (P2) } \quad a P(K)-a^{-1} P(\nless)=z P(\rangle() \tag{i}
\end{equation*}
$$

Tackling structural complexity by knot polynomials

- Helicity and linking number limitations:
(i) $H(K)=f\left(S L_{i}, L k_{i j} ; \Gamma_{i}\right)$;
(ii) $L k_{i j}=0, \sum_{i \neq j} L k_{i j}=0$.
- HOMFLYPT polynomial $P(K)=P_{K}(a, z)$:
(P1) $\quad P(\mathrm{O})=1$
(P2)

$$
a P(\underset{+}{K})-a^{-1} P\left(\aleph_{-}^{\prime}\right)=z P()()
$$

Tackling structural complexity by knot polynomials

- Helicity and linking number limitations:
(i) $H(K)=f\left(S L_{i}, L k_{i j} ; \Gamma_{i}\right)$;
(ii) $L k_{i j}=0, \sum_{i \neq j} L k_{i j}=0$.
- HOMFLYPT polynomial $P(K)=P_{K}(a, z)$:
(PI) $\quad P(\mathrm{O})=1$

PI:

\boldsymbol{U}_{1}

Tackling structural complexity by knot polynomials

- Helicity and linking number limitations:
(i) $H(K)=f\left(S L_{i}, L k_{i j} ; \Gamma_{i}\right)$;
(ii) $L k_{i j}=0, \sum_{i \neq j} L k_{i j}=0$.
- HOMFLYPT polynomial $P(K)=P_{K}(a, z)$:
(PI) $\quad P(\mathrm{O})=1$
(PL) $\quad a P(\xlongequal{\prime})-a^{-1} P\left(\bigwedge^{\prime}\right)=z P()()$

PI:

Tackling structural complexity by knot polynomials

- Helicity and linking number limitations:
(i) $H(K)=f\left(S L_{i}, L k_{i j} ; \Gamma_{i}\right)$;
(ii) $L k_{i j}=0, \sum_{i \neq j} L k_{i j}=0$.
- HOMFLYPT polynomial $P(K)=P_{K}(a, z)$:

$$
\begin{equation*}
P(\mathrm{O})=1 \tag{P1}
\end{equation*}
$$

P1:

Tackling structural complexity by knot polynomials

- Helicity and linking number limitations:
(i) $H(K)=f\left(S L_{i}, L k_{i j} ; \Gamma_{i}\right)$;
(ii) $L k_{i j}=0, \sum_{i \neq j} L k_{i j}=0$.
- HOMFLYPT polynomial $P(K)=P_{K}(a, z)$:

$$
\begin{equation*}
P(\mathrm{O})=1 \tag{P1}
\end{equation*}
$$

$$
\begin{equation*}
a P(\underset{+}{K})-a^{-1} P\left(X^{\prime}\right)=z P()() \tag{P2}
\end{equation*}
$$

P1:

Tackling structural complexity by knot polynomials

- Helicity and linking number limitations:
(i) $H(K)=f\left(S L_{i}, L k_{i j} ; \Gamma_{i}\right)$;
(ii) $L k_{i j}=0, \sum_{i \neq j} L k_{i j}=0$.
- HOMFLYPT polynomial $P(K)=P_{K}(a, z)$:

(PI) $\quad P(\mathrm{O})=1$
(PL) $\quad a P(K)-a^{-1} P(\nless<)=z P()()$

PI:

PR:

Tackling structural complexity by knot polynomials

- Helicity and linking number limitations:
(i) $H(K)=f\left(S L_{i}, L k_{i j} ; \Gamma_{i}\right)$;
(ii) $L k_{i j}=0, \sum_{i \neq j} L k_{i j}=0$.
- HOMFLYPT polynomial $P(K)=P_{K}(a, z)$:

(PI) $\quad P(\mathrm{O})=1$
(P2) $a P(\underset{+}{M})-a^{-1} P(\nless<)=z P()()$

PI:

PR:

Tackling structural complexity by knot polynomials

- Helicity and linking number limitations:
(i) $H(K)=f\left(S L_{i}, L k_{i j} ; \Gamma_{i}\right)$;
(ii) $L k_{i j}=0, \sum_{i \neq j} L k_{i j}=0$.
- HOMFLYPT polynomial $P(K)=P_{K}(a, z)$:

(PI) $\quad P(\mathrm{O})=1$
(PL) $\quad a P(K)-a^{-1} P(\nless<)=z P()()$

PI:

PR:

\boldsymbol{U}_{2}

Tackling structural complexity by knot polynomials

- Helicity and linking number limitations:
(i) $H(K)=f\left(S L_{i}, L k_{i j} ; \Gamma_{i}\right)$;
(ii) $L k_{i j}=0, \sum_{i \neq j} L k_{i j}=0$.
- HOMFLYPT polynomial $P(K)=P_{K}(a, z)$:

(PI) $\quad P(\mathrm{O})=1$
(PL) $\quad a P(K)-a^{-1} P\left(\bigwedge^{\prime}\right)=z P()()$

PI:

PR:

HOMFLYPT polynomial from self-linking

- Theorem (Liu \& Ricca, JFM 2015). If K denotes a vortex knot of axis C and helicity $H=H(K)$, then

$$
e^{H(K)}=e^{\oint_{C} \mathbf{u} \cdot d \mathbf{l}} \quad \text { appropriately rescaled }
$$ satisfies (under a plausible statistical hypothesis) the skein relations of the HOMFLYPT polynomial $P(K)=P_{K}(a, z)$.

- Theorem (Liu \& Ricca, JFM 2015). If K denotes a vortex knot of axis C and helicity $H=H(K)$, then

$$
e^{H(K)}=e^{\oint_{C} \mathbf{u} \cdot d \mathbf{l}} \quad \text { appropriately rescaled }
$$ satisfies (under a plausible statistical hypothesis) the skein relations of the HOMFLYPT polynomial $P(K)=P_{K}(a, z)$.

- HOMFLYPT variables in terms of writhe and twist:

$$
a=f(T w), \quad z=g(W r)
$$

- Theorem (Liu \& Ricca, JFM 2015). If K denotes a vortex knot of axis C and helicity $H=H(K)$, then

$$
e^{H(K)}=e^{\oint_{C} \mathbf{u} \cdot d \mathbf{l}} \quad \text { appropriately rescaled }
$$

satisfies (under a plausible statistical hypothesis) the skein relations of the HOMFLYPT polynomial $P(K)=P_{K}(a, z)$.

- HOMFLYPT variables in terms of writhe and twist:

$$
a=f(T w), \quad z=g(W r)
$$

Hence, from the HOMFLYPT P2 skein relation, we have:

$$
a P(\nless)-a^{-1} P(\nearrow)=z P()() \Longleftrightarrow[f(T w)]=g(W r) .
$$

- Theorem (Liu \& Ricca, JFM 2015). If K denotes a vortex knot of axis C and helicity $H=H(K)$, then

$$
e^{H(K)}=e^{\oint_{C} \mathbf{u} \cdot d \mathbf{l}} \quad \text { appropriately rescaled }
$$

satisfies (under a plausible statistical hypothesis) the skein relations of the HOMFLYPT polynomial $P(K)=P_{K}(a, z)$.

- HOMFLYPT variables in terms of writhe and twist:

$$
a=f(T w), \quad z=g(W r)
$$

Hence, from the HOMFLYPT P2 skein relation, we have:

$$
a P(\nless)-a^{-1} P(\nearrow)={ }_{z} P()() \Longleftrightarrow[f(T w)]=g(W r) .
$$

- Reduction of HOMFLYPT $P_{K}(a, z)$ to Jones $V_{K}(t)$:
- Theorem (Liu \& Ricca, JFM 2015). If K denotes a vortex knot of axis C and helicity $H=H(K)$, then

$$
e^{H(K)}=e^{\oint_{C} \mathbf{u} \cdot d \mathbf{l}} \quad \text { appropriately rescaled }
$$

satisfies (under a plausible statistical hypothesis) the skein relations of the HOMFLYPT polynomial $P(K)=P_{K}(a, z)$.

- HOMFLYPT variables in terms of writhe and twist:

$$
a=f(T w), \quad z=g(W r)
$$

Hence, from the HOMFLYPT P2 skein relation, we have:

$$
a P(\nless)-a^{-1} P(\nearrow)={ }_{z} P()() \Longleftrightarrow[f(T w)]=g(W r) .
$$

- Reduction of HOMFLYPT $P_{K}(a, z)$ to Jones $V_{K}(t)$:
$t=h(a, z): W r \propto T w \Longleftrightarrow$ knots and links are "framed".

Quantifying topological complexity
In general we shall have $P_{K}(a, z)=f(K ; \Gamma)$.

Quantifying topological complexity

In general we shall have $P_{K}(a, z)=f(K ; \Gamma)$.

- Homogeneous superfluid tangle: $\Gamma=1$ and

$$
\left\{\begin{array}{ll}
k=e^{2 \omega}, & \omega=\lambda_{\omega}\langle W r\rangle \\
a=e^{\tau}, & \tau=\lambda_{\tau}\langle T w\rangle
\end{array} \quad \text { with } \quad \begin{array}{c}
\langle W r\rangle=\langle T w\rangle=1 / 2 \\
\lambda_{\omega}=\lambda_{\tau}=1 / 2
\end{array}\right.
$$

Quantifying topological complexity

In general we shall have $P_{K}(a, z)=f(K ; \Gamma)$.

- Homogeneous superfluid tangle: $\Gamma=1$ and

$$
\left\{\begin{array} { l l }
{ k = e ^ { 2 \omega } , } & { \omega = \lambda _ { \omega } \langle W r \rangle } \\
{ a = e ^ { \tau } , } & { \tau = \lambda _ { \tau } \langle T w \rangle }
\end{array} \quad \text { with } \quad \begin{array} { l }
{ \langle W r \rangle = \langle T w \rangle = 1 / 2 } \\
{ \lambda _ { \omega } = \lambda _ { \tau } = 1 / 2 }
\end{array} \quad \longrightarrow \left\{\begin{array}{l}
z=e^{1 / 2}-e^{-1 / 2} \\
a=e^{1 / 4}
\end{array}\right.\right.
$$

Quantifying topological complexity

In general we shall have $P_{K}(a, z)=f(K ; \Gamma)$.

- Homogeneous superfluid tangle: $\Gamma=1$ and

$$
\left\{\begin{array} { l l }
{ k = e ^ { 2 \omega } , } & { \omega = \lambda _ { \omega } \langle W r \rangle } \\
{ a = e ^ { \tau } , } & { \tau = \lambda _ { \tau } \langle T w \rangle }
\end{array} \quad \text { with } \quad \begin{array} { l }
{ \langle W r \rangle = \langle T w \rangle = 1 / 2 } \\
{ \lambda _ { \omega } = \lambda _ { \tau } = 1 / 2 }
\end{array} \quad \longrightarrow \left\{\begin{array}{l}
z=e^{1 / 2}-e^{-1 / 2} \\
a=e^{1 / 4}
\end{array}\right.\right.
$$

Knot type	HOMFLYPT polynomial	Numerical value
\boldsymbol{U}_{N}	$\delta^{N-1}=\left[\left(a-a^{-1}\right) z^{-1}\right]^{N-1}$	0.48^{N-1}

Quantifying topological complexity

In general we shall have $P_{K}(a, z)=f(K ; \Gamma)$.

- Homogeneous superfluid tangle: $\Gamma=1$ and

$$
\left\{\begin{array} { l l }
{ k = e ^ { 2 \omega } , } & { \omega = \lambda _ { \omega } \langle W r \rangle } \\
{ a = e ^ { \tau } , } & { \tau = \lambda _ { \tau } \langle T w \rangle }
\end{array} \quad \text { with } \quad \begin{array} { l }
{ \langle W r \rangle = \langle T w \rangle = 1 / 2 } \\
{ \lambda _ { \omega } = \lambda _ { \tau } = 1 / 2 }
\end{array} \quad \longrightarrow \left\{\begin{array}{l}
z=e^{1 / 2}-e^{-1 / 2} \\
a=e^{1 / 4}
\end{array}\right.\right.
$$

Knot type	HOMFLYPT polynomial	Numerical value
\boldsymbol{U}_{N}	$\delta^{N-1}=\left[\left(a-a^{-1}\right) z^{-1}\right]^{N-1}$	0.48^{N-1}
\boldsymbol{H}_{+}	$a^{-1} z+\left(a^{-1}-a^{-3}\right) z^{-1}$	1.10

Quantifying topological complexity

In general we shall have $P_{K}(a, z)=f(K ; \Gamma)$.

- Homogeneous superfluid tangle: $\Gamma=1$ and
$\left\{\begin{array}{ll}k=e^{2 \omega}, & \omega=\lambda_{\omega}\langle W r\rangle \\ a=e^{\tau}, & \tau=\lambda_{\tau}\langle T w\rangle\end{array}\right.$ with
$\langle W r\rangle=\langle T w\rangle=1 / 2$
$\lambda_{\omega}=\lambda_{\tau}=1 / 2$
$\square\left\{\begin{array}{l}z=e^{1 / 2}-e^{-1 / 2} \\ a=e^{1 / 4}\end{array}\right.$

Knot type	HOMFLYPT polynomial	Numerical value
\boldsymbol{U}_{N}	$\delta^{N-1}=\left[\left(a-a^{-1}\right) z^{-1}\right]^{N-1}$	0.48^{N-1}
\boldsymbol{H}_{+}	$a^{-1} z+\left(a^{-1}-a^{-3}\right) z^{-1}$	1.10
\boldsymbol{H}_{-}	$-a z-\left(a-a^{3}\right) z^{-1}$	-0.54

Quantifying topological complexity

In general we shall have $P_{K}(a, z)=f(K ; \Gamma)$.

- Homogeneous superfluid tangle: $\Gamma=1$ and
$\left\{\begin{array}{ll}k=e^{2 \omega}, & \omega=\lambda_{\omega}\langle W r\rangle \\ a=e^{\tau}, & \tau=\lambda_{\tau}\langle T w\rangle\end{array}\right.$ with
$\langle W r\rangle=\langle T w\rangle=1 / 2$
$\lambda_{\omega}=\lambda_{\tau}=1 / 2$
$\longmapsto\left\{\begin{array}{l}z=e^{1 / 2}-e^{-1 / 2} \\ a=e^{1 / 4}\end{array}\right.$

Knot type	HOMFLYPT polynomial	Numerical value
\boldsymbol{U}_{N}	$\delta^{N-1}=\left[\left(a-a^{-1}\right) z^{-1}\right]^{N-1}$	0.48^{N-1}
\boldsymbol{H}_{+}	$a^{-1} z+\left(a^{-1}-a^{-3}\right) z^{-1}$	1.10
\boldsymbol{H}_{-}	$-a z-\left(a-a^{3}\right) z^{-1}$	-0.54
\boldsymbol{T}^{L}	$2 a^{2}+a^{2} z^{2}-a^{4}$	2.36
\boldsymbol{T}^{R}	$2 a^{-2}+a^{-2} z^{2}-a^{-4}$	1.51
\boldsymbol{F}^{8}	$a^{-2}-1-z^{2}+a^{2}$	0.17
\boldsymbol{W}	$\ldots a^{-1} z^{-1}-a^{-1} z+a z^{-1}+2 a z+a z^{3}-a^{3} z$	1.59
\ldots	\ldots	\ldots

Vortex trefoil cascade process in water (Kleckner \& Irvine 2013)

Vortex trefoil cascade process in water (Kleckner \& Irvine 2013)

Vortex trefoil cascade process in water (Kleckner \& Irvine 2013)

Vortex trefoil cascade process in water (Kleckner \& Irvine 2013)

Vortex trefoil cascade process in water (Kleckner \& Irvine 2013)

$T(2,1)$

Vortex trefoil cascade process in water (Kleckner \& Irvine 2013)

$t=3$

Vortex link cascade in BECs (Zuccher \& Ricca, PRE 2017)

Vortex link cascade in BECs (Zuccher \& Ricca, PRE 2017)

Vortex link cascade in BECs (Zuccher \& Ricca, PRE 2017)

Vortex link cascade in BECs (Zuccher \& Ricca, PRE 2017)

Vortex link cascade in BECs (Zuccher \& Ricca, PRE 2017)

Ideal cascade of torus knots \& links
Consider the cascade process:

Ideal cascade of torus knots \& links

Consider the cascade process:

Ideal cascade of torus knots \& links

Consider the cascade process:

Ideal cascade of torus knots \& links

Consider the cascade process:

(ii)

$$
\begin{aligned}
& \cdots+8 \rightarrow 8 \rightarrow \infty \rightarrow \infty \rightarrow \infty \\
& T(2,7) \quad T(2,6) \quad T(2,5) \quad T(2,4) \quad T(2,3) \quad T(2,2) \quad T(2,1) \quad T(2,0) \\
& \{T(2, n)\}: \ldots \rightarrow T(2,2 n+1) \rightarrow T(2, n) \rightarrow \ldots \rightarrow T(2,0) .
\end{aligned}
$$

- Theorem (Liu \& Ricca 2016). HOMFLYPT computation of $P_{T(2, n)}$ generates for decreasing n a monotonically decreasing sequence of numerical values given by

$$
P_{T(2,3+q)}=A_{q}(\tau, \omega) P_{T(2,3)}+B_{q}(\tau, \omega) P_{T(2,2)} \quad(q \in \mathbb{N})
$$

where $A_{q}(\tau, \omega)$ and $B_{q}(\tau, \omega)$ are known functions of τ and ω, with initial conditions $P_{T(2,3)}$ and $P_{T(2,2)} \cdot$

Vortex trefoil cascade process in water (Kleckner \& Irvine 2013)

$t=3$

Vortex link cascade in BECs (Zuccher \& Ricca 2017)

HOMFLYPT quantifies topological complexity

HOMFLYPT quantifies topological complexity

HOMFLYPT quantifies topological complexity

- HOMFLYPT best quantifier:

Numerical values for torus knots and co-oriented torus links $(W r=T w=1 / 2)$																	
	$T(2,10)$	$T(2,9)$	$T(2,8)$	$T(2,7)$	$T(2,6)$	$T(2,5)$	$T(2,4)$	$T(2,3)$	$T(2,2)$	$T(2,1)$	$T(2,0)$						
HOMFLYPT: $a=e^{1 / 4}, k=e^{1 / 2}$	8.52	6.64	5.17	4.03	3.13	2.44	1.89	1.50	1.11	1	0.48						
Jones: $\tau=e^{-1}$	-0.01	0.02	-0.03	0.05	-0.09	0.15	-0.25	0.40	-0.69	1	-2.26						
Alexander-Conway: $t=e^{-1}$	-65.81	39.92	-24.20	14.70	-8.88	5.44	-3.22	2.08	-1.04	1	-						

HOMFLYPT quantifies topological complexity

- HOMFLYPT best quantifier:

Numerical values for torus knots and co-oriented torus links $(W r=T w=1 / 2)$																		
	$T(2,10)$	$T(2,9)$	$T(2,8)$	$T(2,7)$	$T(2,6)$	$T(2,5)$	$T(2,4)$	$T(2,3)$	$T(2,2)$	$T(2,1)$	$T(2,0)$							
HOMFLYPT: $a=e^{1 / 4}, k=e^{1 / 2}$	8.52	6.64	5.17	4.03	3.13	2.44	1.89	1.50	1.11	1	0.48							
Jones: $\tau=e^{-1}$	-0.01	0.02	-0.03	0.05	-0.09	0.15	-0.25	0.40	-0.69	1	-2.26							
Alexander-Conway: $t=e^{-1}$	-65.81	39.92	-24.20	14.70	-8.88	5.44	-3.22	2.08	-1.04	1	-							

Conclusions and outlook

- Adapted HOMFLYPT as best quantifier of cascade processes:

Conclusions and outlook

- Adapted HOMFLYPT as best quantifier of cascade processes:
- P_{K} provides monotonic behavior consistently;

Conclusions and outlook

- Adapted HOMFLYPT as best quantifier of cascade processes:
- P_{K} provides monotonic behavior consistently;
- numerical values robust and reliable markers for diagnostics;

Conclusions and outlook

- Adapted HOMFLYPT as best quantifier of cascade processes:
- P_{K} provides monotonic behavior consistently;
- numerical values robust and reliable markers for diagnostics;
- $P_{T(2,2 n)} / c_{\min } \approx 0.5,(0 \leq n \leq 6)$ (except for the unknot).

Conclusions and outlook

- Adapted HOMFLYPT as best quantifier of cascade processes:
- P_{K} provides monotonic behavior consistently;
- numerical values robust and reliable markers for diagnostics;
- $P_{T(2,2 n)} / c_{\min } \approx 0.5,(0 \leq n \leq 6)$ (except for the unknot).
- Recombinant DNA plasmids (Shimokawa et al. 2013):

Conclusions and outlook

- Adapted HOMFLYPT as best quantifier of cascade processes:
- P_{K} provides monotonic behavior consistently;
- numerical values robust and reliable markers for diagnostics;
- $P_{T(2,2 n)} / c_{\min } \approx 0.5,(0 \leq n \leq 6)$ (except for the unknot).
- Recombinant DNA plasmids (Shimokawa et al. 2013):

- Optimal path to cascade?

$$
P_{T(2,4)}=3.13{ }^{P_{T(2,5)}=2.44 \rightarrow P_{T(2,4)}=1.89}{ }_{P_{T(2,3)}=1.50}
$$

Conclusions and outlook

- Adapted HOMFLYPT as best quantifier of cascade processes:
- P_{K} provides monotonic behavior consistently;
- numerical values robust and reliable markers for diagnostics;
- $P_{T(2,2 n)} / c_{\min } \approx 0.5,(0 \leq n \leq 6)$ (except for the unknot).
- Recombinant DNA plasmids (Shimokawa et al. 2013):

- Optimal path to cascade?

Selected references

- Liu, X. \& Ricca, R.L. (2012) The Jones polynomial for fluid knots from helicity. J Phys A: Math \& Theor 45, 205501.
- Laing, C.E., Ricca, R.L. \& Sumners, DeW. L. (2015) Conservation of writhe helicity under anti-parallel reconnection. Nature Scientific Reports 5, 9224.
- Liu, X. \& Ricca, R.L. (2015) On the derivation of HOMFLYPT polynomial invariant for fluid knots. J Fluid Mech 773, 34-48.
- Liu, X. \& Ricca, R.L. (2016) Knots cascade detected by a monotonically decreasing sequence of values. Nature Scientific Reports 6, 24118.
- Zuccher, S. \& Ricca, R.L. (2017) Relaxation of twist helicity in the cascade process of linked quantum vortices. Phys Rev E 95, 053109.
- Ricca, R.L. \& Liu, X. (2018) HOMFLYPT polynomial is the best quantifier for topological cascades of vortex knots. Fluid Dyn. Research 50, 011404.
- Oberti, C. \& Ricca, R.L. (2019) Influence of winding number on vortex knots dynamics. Nature Scientific Reports 9, 17284.

Thank you!

