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Classical links

A link is a smooth embedding of finite disjoint circles S1 in 3-sphere S3.

Two links L1 and L2 are said to be ambient isotopic if there is exist an ambient
isotopy H : S3 × [0, 1]→ S3 such that H(L1, 0) = L1 and H(L1, 1) = L2.
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Link diagrams

A link diagram is a generic projection of a link L onto a plane with over- and
under-crossing information at double points.

Figure: Trefoil knot diagram.

Two link diagrams D1 and D2 are said to be equivalent if they are related by a
finite sequence of moves shown below, upto planar isotopy:

R1 R2 R3

Figure: Reidemeister moves.

Theorem (K. Reidemeister)

Two links are ambient isotopic iff any diagram of one can be transformed into
a diagram of the other by a sequence of Reidemeister moves.
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Classical link group

Classical link group of link L: Fundamental group of link complement
π1(S3 − L) and it is a link invariant.

x1

x2 x3

Figure: Trefoil knot diagram (T ).

a

a

b

c

c = ba = a−1ba.

π1(S3 − T ) = 〈x1, x2, x3 || x2 = xx31 , x3 = xx12 , x1 = xx23 〉.
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Virtual links

L. H. Kauffman, Virtual knot theory, European J. Combin. 20 (1999), no. 7, 663–690.

A virtual link diagram is a generic immersion of finite disjoint oriented circles
into a plane where double points are either classical crossings or decorated with
a circle around it, called a virtual crossing.

Figure: A virtual knot diagram.
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Virtual links

Two virtual links diagrams are said to be equivalent if one diagram can be
transformed into the another diagram by a finite sequence of generalized
Reidemeister moves.

Generalized Reidemeister moves:= Reidemeister moves +

the moves shown
below.

V R1 V R2 V R3

V R4

Figure: Virtual Reidemeister moves.

An equivalence class of a virtual link diagrams is called a virtual link.

Theorem (L. Kauffman)

Virtual links are proper generalization of classical links.
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Gauss diagrams

A Gauss diagram consists of finite number of disjoint circles oriented
anticlockwise with finite number of signed arrows whose head and tail lies on
circles.
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Gauss diagrams

To each virtual link diagram one can associate a Gauss diagram.

*
x1

x2

x3

x4
1

2

3
4

Figure: A virtual knot diagram K.

Oriented Gauss code for K: 1O− 2U− 1U− 2O− 3O− 4U− 3U− 4O−

1O

2U1U

2O

3O

4U 3U

4O

--

- -
*

Figure: Gauss diagram for the virtual knot diagram K.
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Gauss diagrams

*
x1

x2

x3

x4
1

2

3
4

Figure: A virtual knot diagram K.

x4

1O

2U1U

2O

3O

4U 3U

4O

--

- -

x1

x2

x3 *

Figure: Gauss diagram for the virtual knot diagram K.
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Gauss diagrams

Two Gauss diagrams are said to be equivalent if one diagram can be changed
into the another diagram by a finite sequence of moves as shown below:

Figure: Reidemeister moves on Gauss diagrams.

There is one-to-one correspondence between virtual links and equivalence
classes of Gauss diagrams.
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Virtual link group (L. Kauffman)

Let D be a given Gauss diagram,

I label the arcs from one arrow head to another arrow head as
x1, x2, . . . , xn. These are our generators for virtual link group GK(D).

I for each arrow add a relation as shown below.

a

ab

c

ε

c = ba
ε

GK(D) = 〈x1, x2, . . . , xn || one relation for each arrow 〉.
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Example

x4

1O

2U1U

2O

3O

4U 3U

4O

--

- -

x1

x2

x3 *

GK(D) := 〈x1, x2, x3, x4 || x2 = x
x−1
3

1 , x3 = x
x−1
1

2 , x4 = x
x−1
1

3 , x1 = x
x−1
3

4 〉.
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Peripheral structure for virtual links using group GK(D)

Let D be a Gauss diagram and GK(D) be the group associated to it.

I Meridian: Take generator corresponding to any of the arcs in a given
Gauss diagram, say x.

I Longitude: Start moving from the meridian arc along the circle and write
aε when passing the head of on arrow, whose sign is ε and tail lies on the
arc a, until we reach the meridian arc, and at the end write x−p, where p
is so chosen that the longitude is in the commutator subgroup of GK(D).

I Peripheral pair: (m, l).

I Peripheral subgroup: Subgroup generated by meridian m and the
corresponding longitude l in GK(D).

I Peripheral structure: Conjugacy class of peripheral pair.
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Example

x4

1O

2U1U

2O

3O

4U 3U

4O

--

- -

x1

x2

x3 *

I Meridian m = x1.

I Longitude l = x−1
3 x−1

1 x−1
1 x−1

3 x41.
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C-groups

Vik. S. Kulikov, Alexander polynomials of plane algebraic curves, Russian Acad. Sci. Izv.

Math. 42 (1994), no. 1, 67–89.

Vik. S. Kulikov, A geometric realization of C-groups, Russian Acad. Sci. Izv. Math. 45

(1995), no. 1, 197–206.

A group G is called a C-group if it admits a presentation 〈X || R〉, where
X = {x1, x2, . . . , xn} and relations R are of the type w−1

i,j xiwi,j = xj , for

some xi, xj ∈ X and some words wi,j in X±1.

For example, the fundamental group of a link complement in S3 is a C-group.

A C-group G is said to be irreducible if its abelianization is Z.

For example, the fundamental group of a knot complement in S3 is an
irreducible C-group.
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S. Kim results

S. G. Kim, Virtual knot groups and their peripheral structure, J. Knot Theory Ramifications

9 (2000), no. 6, 797–812.

Theorem

Every irreducible C-group can be realized as a virtual knot group.

Neuwirth Problem for virtual knots

Let G be a group and µ ∈ G. Suppose G is finitely generated by the
conjugates of µ. An element λ ∈ G is said to be realizable if there exists a
virtual knot K and an onto homomorphism ρ : GK(K)→ G such that
ρ(m) = µ and ρ(l) = λ. Let ΛG denotes the set of realizable elements in G. Is
ΛG a non-empty set?

Theorem

The set ΛG is a non-empty subgroup of G.

Theorem

ΛG = G′ ∩ Z(µ), where G′ is the commutator subgroup of G and Z(µ) is the
centralizer of µ in G.
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Braid groups

Let Bn denotes the braid group on n strands.

I Generators: σ1, σ2, . . . , σn−1,

I Relations:

σiσi+1σi = σi+1σiσi+1 for i ∈ {1, 2, . . . , n− 2};
σiσj = σjσi where |i− j| ≥ 2 for i, j ∈ {1, 2, . . . , n− 1};

. . .. . .

i− 1 i i+ 1 i+ 2 n1

Figure: Generator σi.

43 / 86



Artin representation of braid groups

Let Fn = 〈x1, x2, . . . , xn〉 be the free group of rank n.

Artin representation: ψ : Bn → Aut(Fn) defined as

ψ(σi) :

{
xi 7→ xixi+1x

−1
i ,

xi+1 7→ xi.

Artin representation is a faithful representation.
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Virtual braid groups

The virtual braid group V Bn is the group generated by
σ1, σ2, . . . , σn−1, ρ1, ρ2, . . . , ρn−1 with following relations:

σiσi+1σi = σi+1σiσi+1 for i ∈ {1, 2, . . . , n− 2};
σiσj = σjσi where |i− j| ≥ 2 for i, j ∈ {1, 2, . . . , n− 1};

ρ2i = 1 for i ∈ {1, 2, . . . , n− 1};
ρiρj = ρjρi where |i− j| ≥ 2 for i, j ∈ {1, 2, . . . , n− 1};

ρiρi+1ρi = ρi+1ρiρi+1 for i ∈ {1, 2, . . . , n− 2};
σiρj = ρjσi where |i− j| ≥ 2 for i, j ∈ {1, 2, . . . , n− 1};

ρiρi+1σi = σi+1ρiρi+1 for i ∈ {1, 2, . . . , n− 2}.

. . .. . .

i− 1 i i+ 1 i+ 2 n1

Figure: Generator ρi.
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Notations

I Fn := 〈x1, x2, . . . , xn〉 is the free group of rank n.

I Fn,1 := Fn ∗ Z, where Z = 〈v〉 is the free abelian group of rank 1.

I Fn,n := Fn ∗ Zn, where Zn = 〈v1, v2, . . . , vn〉 is the free abelian group of
rank n.

I Fn,n+1 := Fn ∗ Zn+1, where Zn+1 = 〈v1, v2, . . . , vn, u〉 is the free group
of rank n+ 1.

I Fn,2 = Fn ∗ Z2, where Z2 = 〈u, v〉 is the free abelian group of rank 2.

I Fn,2n+1 := Fn ∗ Z2n+1, where Z2n+1 = 〈u1, u2, . . . , un, v0, v1, v2, . . . , vn〉
is the free abelian group of rank 2n+ 1.
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Representations of V Bn

Two representations ψ : V Bn → Aut(H) and ψ̃ : V Bn → Aut(H) are said to
be equivalent if there exist an automorphism φ : H → H such that
ψ̃(β) = φ−1 ◦ ψ(β) ◦ ψ for all β ∈ V Bn.
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Examples

Generalized Artin representation: ψA : V Bn → Aut(Fn,1) is defined as

ψA(σi) :

{
xi 7→ xixi+1x

−1
i ,

xi+1 7→ xi,
ψA(ρi) :

{
xi 7→ xv

−1

i+1 ,
xi+1 7→ xvi .

Silver-Williams representation: ψSW : V Bn → Aut(Fn,n+1) is defined as

ψSW (σi) :

{
xi 7→ xix

ui
i+1x

−vui+1

i ,
xi+1 7→ xvi ,

ψSW (σi) :

{
ui 7→ ui+1,
ui+1 7→ ui,

ψSW (ρi) :

{
xi 7→ xi+1,
xi+1 7→ xi,

ψSW (ρi) :

{
ui 7→ ui+1,
ui+1 7→ ui.

Boden-Dies representation: ψ : V Bn → Aut(Fn,2) is defined as

ψBD(σi) :

{
xi 7→ xixi+1x

−u
i ,

xi+1 7→ xui ,
ψBD(ρi) :

{
xi 7→ xv

−1

i+1 ,
xi+1 7→ xvi .
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Silver-Williams representation: ψSW : V Bn → Aut(Fn,n+1) is defined as

ψSW (σi) :

{
xi 7→ xix

ui
i+1x

−vui+1

i ,
xi+1 7→ xvi ,

ψSW (σi) :

{
ui 7→ ui+1,
ui+1 7→ ui,

ψSW (ρi) :

{
xi 7→ xi+1,
xi+1 7→ xi,

ψSW (ρi) :

{
ui 7→ ui+1,
ui+1 7→ ui.

Boden-Dies representation: ψ : V Bn → Aut(Fn,2) is defined as

ψBD(σi) :

{
xi 7→ xixi+1x

−u
i ,

xi+1 7→ xui ,
ψBD(ρi) :

{
xi 7→ xv

−1

i+1 ,
xi+1 7→ xvi .
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Examples

Bardakov-Mikhalchishina-Neshchadim

The representation ψM : V Bn −→ Aut(Fn,2n+1) is defined as:

ψM (σi) :

{
xi 7−→ xix

ui
i+1x

−v0ui+1

i ,
xi+1 7−→ xv0i ,

ψM (σi) :

{
vi 7−→ vi+1,
vi+1 7−→ vi,

ψM (σi) :

{
ui 7−→ ui+1,
ui+1 7−→ ui,

ψM (ρi) :

{
xi 7−→ x

v−1
i
i+1 ,

xi+1 7−→ x
vi+1

i ,
ψM (ρi) :

{
vi 7−→ vi+1,
vi+1 7−→ vi,

ψM (ρi) :

{
ui 7−→ ui+1,
ui+1 7−→ ui.

This representation generalizes the previous representations.
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Virtually symmetric representations of V Bn

Definition

A representation ϕ : V Bn → Aut(H) of the virtual braid group V Bn into the
automorphism group of some group (or module) H = 〈h1, h2, . . . , hm || R〉 is
called virtually symmetric if for any generator ρi, i = 1, 2, . . . , n− 1, its image
ϕ(ρi) is a permutation of the generators h1, h2, . . . , hm.

Examples of representations equivalent to virtually symmetric representations

I Generalized Artin representation,

I Silver-William representation,

I Boden-Dies representation,

I Bardakov-Mikhalchishina-Neshchadim representation.
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Equivalent to Bardakov-Mikhalchishina-Neshchadim

ψ̃M : V Bn −→ Aut(Fn,2n+1)

ψ̃M (σi) :

{
xi 7−→ xixi+1x

−1
i ,

xi+1 7−→ xi,
ψ̃M (σi) :

{
vi 7−→ vi+1,
vi+1 7−→ vi,

ψ̃M (σi) :

{
ui 7−→ ui+1,
ui+1 7−→ ui,

ψ̃M (ρi) :

{
xi 7−→ x

v−1
i
i+1 ,

xi+1 7−→ x
vi+1

i ,
ψ̃M (ρi) :

{
vi 7−→ vi+1,
vi+1 7−→ vi,

ψ̃M (ρi) :

{
ui 7−→ ui+1,
ui+1 7−→ ui.
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Subrepresentation of Bardakov-Mikhalchishina-Neshchadim

The representation φM : V Bn → Aut(Fn,n) is defined by the action on the
generators:

φM (σi) :

{
xi 7→ xixi+1x

−1
i ,

xi+1 7→ xi,
φM (σi) :

{
vi 7→ vi+1,
vi+1 7→ vi,

φM (ρi) :

{
xi 7→ x

v−1
i
i+1 ,

xi+1 7→ x
vi+1

i ,
φM (ρi) :

{
vi 7→ vi+1,
vi+1 7→ vi.
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Virtually symmetric representation equivalent to the previous representation

A virtually symmetric representation

The representation ϕM : V Bn → Aut(Fn,n) is defined as below is equivalent
to the representation φM : V Bn → Aut(Fn,n).

ϕM (σi) :

{
xi 7→ xi xvii+1 x−1

i ,

xi+1 7→ x
v−1
i+1

i ,
ϕM (σi) :

{
vi 7→ vi+1,
vi+1 7→ vi,

ϕM (ρi) :

{
xi 7→ xi+1,
xi+1 7→ xi,

ϕM (ρi) :

{
vi 7→ vi+1,
vi+1 7→ vi.

We will use this representation to define virtual link groups and will show the
advantage of it over the previous representation which is not a virtually
symmetric representation.
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Virtual link group

The braid approach

Let β ∈ V Bn. Define groups

GM (β) := 〈x1, x2, . . . , xn, v1, v2, . . . , vn | [vi, vj ] = 1,

xi = ϕM (β)(xi), vi = ϕM (β)(vi), where 1 ≤ i, j ≤ n〉.
G(β) := 〈x1, x2, . . . , xn, v1, v2, . . . , vn | [vi, vj ] = 1,

xi = φM (β)(xi), vi = φM (β)(vi), where 1 ≤ i, j ≤ n〉.
GM (β) ∼=G(β).

Theorem

If β ∈ V Bn and β′ ∈ V Bm are two virtual braids such that their closure define
the same link L, then GM (β) ∼= GM (β′), i.e, the group GM (β) is a link
invariant.
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Virtual link group

The diagram approach

Let D(L) be a virtual link diagram with m-components.

I Enumerate all components with integers from 1 to m.

I Label each arc from one classical crossing to another classical crossing
with labels x1, x2, . . . , xn.

I Define the virtual link group GM (D(L)) as

〈x1, x2 . . . , xn, v1, v2, . . . , vm | R, [vi, vj ] where 1 ≤ i, j ≤ m〉,

jth componentjth componentith component ith component

c = bvi ,

d = b−viv
−1
j av

−1
j bviv

−1
j .

c = abvia−1,

d = av
−1
j .

Positive Negative Virtual

a b

c d

a

c

b

d

a

a

b

b
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Virtual link group

Theorem

If D(L) and D(L′) are two diagrams of a virtual link L, then groups
GM (D(L)) and GM (D(L′)) are isomorphic. Hence GM (D(L)) is an invariant
of L.

Theorem

Let L be a virtual link, D(L) be its diagram, β be a braid such that its closure
β̂ is equivalent to L, then GM (D(L)) ∼= GM (β). Denote
GM (L) := GM (D(L)).
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Virtual link group

The Gauss diagram approach

Let D be a Gauss diagram representing the virtual link L having
m-components. Then enumerate the circles in D with integers from 1 to m.
Label the arc of circles as x1, x2, . . . , xn, after cutting the circles at each
extreme points of arrows. Define the group

πD := 〈x1, x2, . . . , xn, v1, v2, . . . , vm | [vi, vj ],R〉.

In figure below a, d ∈ set of arcs in ith-circle and b, c ∈ set of arc in jth-circle.

c = bvi

d = b−viv
−1
j av

−1
j bviv

−1
j

+ −

c = abvia−1

d = av
−1
j

a

d

c

b

a

d

c

b

Figure: Relations at crossings.
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Virtual link group

The Gauss diagram approach

Let D be a Gauss diagram representing the virtual link L having
m-components. Then enumerate the circles in D with integers from 1 to m.
Label the arc of circles as x1, x2, . . . , xn, after cutting the circles at each
extreme points of arrows. Define the group

πD := 〈x1, x2, . . . , xn, v1, v2, . . . , vm | [vi, vj ],R〉.

In figure below a, d ∈ set of arcs in ith-circle and b, c ∈ set of arc in jth-circle.

c = bvi

d = b−viv
−1
j av

−1
j bviv

−1
j

+ −

c = abvia−1

d = av
−1
j

a

d

c

b

a

d

c

b

Figure: Relations at crossings.
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Virtual link group

Theorem

Let D be a Gauss diagram representing the link L. Then GM (L) ∼= πD.

Remark

If in the group πD, we put v1 = v2 = · · · = vm = 1, then we get the group
GK(D).
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Example

+ +
x1

x2

x3

x4

I

πD = 〈x1, x2, x3, x4, v || x2 = xv1 , x4 = x−1
1 xv

−1

3 x1,

x3 = xv2 , x1 = x−1
2 xv

−1

4 x2〉.

I

GK(D) = Z.
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Generalization of Gauss diagrams

Definition

A marked Gauss diagram consists of finite number of disjoint circles oriented
anticlockwise with finite number of signed arrows whose head and tail lie on
circles, and finite number of signed nodes lying on circles and not attach to
arrows.

+ +

+

+
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Equivalence of marked Gauss diagrams

Definition

Two marked Gauss diagrams are said to be equivalent if one can be
transformed to another by a finite sequence of marked Reidemeister moves.

Marked Reidemeister moves:= Reidemeister moves on Gauss diagrams +

moves shown below.
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Group associated to a marked Gauss diagram

Group of a marked Gauss diagram

Let D be a marked Gauss diagram with m-components. Enumerate the circles
in D with integers from 1 to m. Label the arc of circles as x1, x2, . . . .xn after
cutting the circles at nodes and at each each extreme points of arrows. Define
the group

ΠD := 〈x1, x2, . . . , xn, v1, v2, . . . , vm | [vi, vj ],R〉,

where R is the set of relations corresponding to arrows and nodes shown below.

c = bvi

d = b−viv
−1
j av

−1
j bviv

−1
j

+ −

c = abvia−1

d = av
−1
j

η

c = bv
η
i

a

d

c

b

a

d

c

b

c

b

jthith jthith ith
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Group associated to a marked Gauss diagram

Group of a marked Gauss diagram

Let D be a marked Gauss diagram with m-components. Enumerate the circles
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cutting the circles at nodes and at each each extreme points of arrows. Define
the group
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d = b−viv
−1
j av

−1
j bviv
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j
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−1
j

η

c = bv
η
i

a

d

c

b

a

d

c

b

c

b

jthith jthith ith
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Example

+ +

+

+

x1

x2x3

x4

x5 x6

ΠD = 〈x1, x2, x3, x4, x5, x6, v || x2 = xv1 , x5 = x−1
1 xv

−1

4 x1, x3 = xv2 ,

x4 = xv3 , x1 = x−1
3 xv

−1

6 x3, x6 = xv5〉
� F2, thus D is a non-trivial marked Gauss diagram.
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Peripheral structure for marked Gauss diagrams

Let us suppose we are on the kth circle.

I Meridian: Take generator corresponding to any of the arcs in the kth-circle
of a given marked Gauss diagram, say x.

I Longitude: Start moving from the meridian arc along the circle and write
vεt when pass the tail of an arrow with sign ε and whose head lies on the
tth-circle, and when we pass the head of an arrow whose tail is on the
nth-circle and is the end point of arc xi, we use the following rule:

I if arrow sign is +1, write v−1
n x

vkv
−1
n

i ,
I if arrow sign is −1, write vnx

−1
i .

And when we pass node with sign ε, we write vεk. On coming back to the
meridian arc x, we write x−α, where α is the sum of sign of arrows whose
head lies on the kth-circle.

I Peripheral pair: (m, l).

I Peripheral subgroup: Subgroup generated by meridian m and the
corresponding longitude l in ΠD.

I Peripheral structure: Conjugacy class of peripheral pair.
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Example

+ +

+

+

x1

x2x3

x4

x5 x6

I Meridian m = x1.

I Longitude l = vvvv−1x1vv
−1x3x

−2
1 = v2x1x3x

−2
1 .
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Cm-groups

Definition

Let m be a non-negative integer. A group G is called a Cm-group if it can be
defined by a set of generators Y = X ∪ Vm, where X = {x1, x2, . . . , xn},
Vm = {v1, v2, . . . , vm} and a set of relations R:

w−1
i,j xiwi,j = xj , for some xi, xj ∈ X and some words wi,j in Y ±1;

vivj = vjvi, for all vi, vj ∈ Vm.

Definition

A Cm group G, where m ≥ 1, is said to irreducible if its abelianization of is of
rank 2m.

For example, if D is a marked Gauss diagram with m-components, then ΠD is
an irreducible Cm-group.
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Results

Theorem (Bardakov-Neshchadim-Singh)

Any irreducible C1-group can be realized as the group associated to a marked
Gauss diagrams.

Neuwirth Problem for marked Gauss diagrams

Let G be a group and µ, ν ∈ G. Suppose G is finitely generated by ν and
conjugates of µ. An element λ ∈ G is said to be realizable if there exists a
1-circle marked Gauss diagram D and an onto homomorphism ρ : ΠD → G
such that ρ(m) = µ, ρ(v) = ν and ρ(l) = λ. Let ΛG denotes the set of
realizable elements in G. Is ΛG a non-empty set?

Theorem (Bardakov-Neshchadim-Singh)

The set ΛG is a non-empty subgroup of G.
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Thank you for the attention!
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