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A link is a smooth embedding of finite disjoint circles S* in 3-sphere S®.
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A link is a smooth embedding of finite disjoint circles S* in 3-sphere S®.

Two links L1 and Lo are said to be ambient isotopic if there is exist an ambient
isotopy H : S® x [0,1] — S® such that H(L1,0) = L; and H(L1,1) = L.

«0O>» < Fr «=)» « =)

1PN G4
3/86



A link diagram is a generic projection of a link L onto a plane with over- and
under-crossing information at double points.
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A link diagram is a generic projection of a link L onto a plane with over- and
under-crossing information at double points.

&

Figure: Trefoil knot diagram.
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Link diagrams

A link diagram is a generic projection of a link L onto a plane with over- and
under-crossing information at double points.

&

Figure: Trefoil knot diagram.

Two link diagrams D3 and D3 are said to be equivalent if they are related by a
finite sequence of moves shown below, upto planar isotopy:

1 \
F““P N \/ /\

Ry Ro

Figure: Reidemeister moves.
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Link diagrams

A link diagram is a generic projection of a link L onto a plane with over- and
under-crossing information at double points.

&

Figure: Trefoil knot diagram.

Two link diagrams D3 and D3 are said to be equivalent if they are related by a
finite sequence of moves shown below, upto planar isotopy:

1 \
F““P N \/ /\

Ry Ro

Figure: Reidemeister moves.

Theorem (K. Reidemeister)

Two links are ambient isotopic iff any diagram of one can be transformed into

a diagram of the other by a sequence of Reidemeister moves.
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Classical link group of link L: Fundamental group of link complement
m1(S* — L) and it is a link invariant.
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Classical link group of link L: Fundamental group of link complement
m1(S* — L) and it is a link invariant.

x1

Figure: Trefoil knot diagram (7).
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Classical link group of link L: Fundamental group of link complement
m1(S* — L) and it is a link invariant.

x1

Figure: Trefoil knot diagram (7).
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Classical link group of link L: Fundamental group of link complement
m1(S* — L) and it is a link invariant.

x1

Figure: Trefoil knot diagram (7).
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Classical link group of link L: Fundamental group of link complement
m1(S* — L) and it is a link invariant.

x1

mz@m
Figure: Trefoil knot diagram (7).
N4

a c

c=0b=a""ba.
m1(S* = T) = (21,22, 23 || 22 = 27°, 23 = 25", 21 = 257)
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L. H. Kauffman, Virtual knot theory, European J. Combin. 20 (1999), no. 7, 663-690.

A virtual link diagram is a generic immersion of finite disjoint oriented circles
into a plane where double points are either classical crossings or decorated with
a circle around it, called a virtual crossing.

Figure: A virtual knot diagram.
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Two virtual links diagrams are said to be equivalent if one diagram can be

transformed into the another diagram by a finite sequence of generalized
Reidemeister moves.

Generalized Reidemeister moves:= Reidemeister moves +
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Virtual links

Two virtual links diagrams are said to be equivalent if one diagram can be
transformed into the another diagram by a finite sequence of generalized
Reidemeister moves.

Generalized Reidemeister moves:= Reidemeister moves + the moves shown
below.
VR1 VR2 VRS
VR

4

Figure: Virtual Reidemeister moves.

15/86



Virtual links

Two virtual links diagrams are said to be equivalent if one diagram can be
transformed into the another diagram by a finite sequence of generalized
Reidemeister moves.

Generalized Reidemeister moves:= Reidemeister moves + the moves shown
below.
VR1 VR2 VRS
VR

4

Figure: Virtual Reidemeister moves.

An equivalence class of a virtual link diagrams is called a virtual link.
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Virtual links

Two virtual links diagrams are said to be equivalent if one diagram can be
transformed into the another diagram by a finite sequence of generalized
Reidemeister moves.

Generalized Reidemeister moves:= Reidemeister moves + the moves shown
below.
VR1 VR2 VRS
VR

4

Figure: Virtual Reidemeister moves.

An equivalence class of a virtual link diagrams is called a virtual link.

Theorem (L. Kauffman)

Virtual links are proper generalization of classical links.
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A Gauss diagram consists of finite number of disjoint circles oriented
circles.

anticlockwise with finite number of signed arrows whose head and tail lies on
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A Gauss diagram consists of finite number of disjoint circles oriented
circles.

anticlockwise with finite number of signed arrows whose head and tail lies on
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To each virtual link diagram one can associate a Gauss diagram.

[m]
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To each virtual link diagram one can associate a Gauss diagram.

1
3 74 T2 1
T3 2

Figure: A virtual knot diagram K.
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To each virtual link diagram one can associate a Gauss diagram.

1
3 74 T2 1
T3 2

Figure: A virtual knot diagram K.

Oriented Gauss code for K: 10 —2U — 1U — 20 — 30 — 4U — 3U — 40—
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Gauss diagrams

To each virtual link diagram one can associate a Gauss diagram.

Figure: A virtual knot diagram K.

Oriented Gauss code for K: 10 — 2U — 1U — 20 — 30 — 4U — 3U — 40—

Figure: Gauss diagram for the virtual knot diagram K.
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1
3 74 T2 0
T3 2

Figure: A virtual knot diagram K.

&3

Figure: Gauss diagram for the virtual knot diagram K.

40> «Fr «=)» <

it
-

1PN G4
24 /86



Two Gauss diagrams are said to be equivalent if one diagram can be changed
into the another diagram by a finite sequence of moves as shown below:

D>~
T

‘@%U
Ny

Figure: Reidemeister moves on Gauss diagrams.
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Gauss diagrams

Two Gauss diagrams are said to be equivalent if one diagram can be changed
into the another diagram by a finite sequence of moves as shown below:

D—D—3
T———%

S
-1

Figure: Reidemeister moves on Gauss diagrams.

There is one-to-one correspondence between virtual links and equivalence
classes of Gauss diagrams.
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Let D be a given Gauss diagram,

[m]
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Let D be a given Gauss diagram,

» label the arcs from one arrow head to another arrow head as

Z1,T2,...,ZTn. These are our generators for virtual link group Gk (D).
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Let D be a given Gauss diagram,

» label the arcs from one arrow head to another arrow head as

b

Z1,T2,...,ZTn. These are our generators for virtual link group Gk (D).
» for each arrow add a relation as shown below.

a

/a
c=0b""
GK(D) = <x13x2a sy T ||

one relation for each arrow ).
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-1

-1

—1
Gi(D) = (z1,22,23,24 || 32 =2} 23 =1a3" 24 =13 ,21=24" )
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Let D be a Gauss diagram and G (D) be the group associated to it.

» Meridian: Take generator corresponding to any of the arcs in a given
Gauss diagram, say .
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Peripheral structure for virtual links using group G (D)

Let D be a Gauss diagram and G (D) be the group associated to it.

» Meridian: Take generator corresponding to any of the arcs in a given
Gauss diagram, say .

» Longitude: Start moving from the meridian arc along the circle and write
a® when passing the head of on arrow, whose sign is € and tail lies on the
arc a, until we reach the meridian arc, and at the end write 77, where p
is so chosen that the longitude is in the commutator subgroup of Gk (D).
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Peripheral structure for virtual links using group G (D)

Let D be a Gauss diagram and G (D) be the group associated to it.

» Meridian: Take generator corresponding to any of the arcs in a given
Gauss diagram, say .

» Longitude: Start moving from the meridian arc along the circle and write
a® when passing the head of on arrow, whose sign is € and tail lies on the
arc a, until we reach the meridian arc, and at the end write 77, where p
is so chosen that the longitude is in the commutator subgroup of Gk (D).

» Peripheral pair: (m,1).
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Peripheral structure for virtual links using group G (D)

Let D be a Gauss diagram and G (D) be the group associated to it.

» Meridian: Take generator corresponding to any of the arcs in a given
Gauss diagram, say .

» Longitude: Start moving from the meridian arc along the circle and write
a® when passing the head of on arrow, whose sign is € and tail lies on the
arc a, until we reach the meridian arc, and at the end write 77, where p
is so chosen that the longitude is in the commutator subgroup of Gk (D).

» Peripheral pair: (m,1).

» Peripheral subgroup: Subgroup generated by meridian m and the
corresponding longitude ! in Gk (D).
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Peripheral structure for virtual links using group G (D)

Let D be a Gauss diagram and G (D) be the group associated to it.

» Meridian: Take generator corresponding to any of the arcs in a given
Gauss diagram, say .

» Longitude: Start moving from the meridian arc along the circle and write
a® when passing the head of on arrow, whose sign is € and tail lies on the
arc a, until we reach the meridian arc, and at the end write 77, where p
is so chosen that the longitude is in the commutator subgroup of Gk (D).

» Peripheral pair: (m,1).

» Peripheral subgroup: Subgroup generated by meridian m and the
corresponding longitude ! in Gk (D).

» Peripheral structure: Conjugacy class of peripheral pair.
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» Meridian m = x1.

1

» Longitude | = x5 oy oy tay tat.
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C-groups

@ Vik. S. Kulikov, Alexander polynomials of plane algebraic curves, Russian Acad. Sci. lzv.
Math. 42 (1994), no. 1, 67-89.

@ Vik. S. Kulikov, A geometric realization of C-groups, Russian Acad. Sci. lzv. Math. 45
(1995), no. 1, 197-206.

A group G is called a C-group if it admits a presentation (X || R), where
X ={z1,22,...,zx} and relations R are of the type w;;xiwi,]- = x;, for
some z;,z; € X and some words w; ; in X*'.

For example, the fundamental group of a link complement in S is a C-group.

A C-group G is said to be irreducible if its abelianization is Z.

For example, the fundamental group of a knot complement in S* is an
irreducible C-group.
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S. G. Kim, Virtual knot groups and their peripheral structure, J. Knot Theory Ramifications
9 (2000), no. 6, 797-812
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S. G. Kim, Virtual knot groups and their peripheral structure, J. Knot Theory Ramifications
9 (2000), no. 6, 797-812

Every irreducible C-group can be realized as a virtual knot group.
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S. G. Kim, Virtual knot groups and their peripheral structure, J. Knot Theory Ramifications
9 (2000), no. 6, 797-812.

Every irreducible C-group can be realized as a virtual knot group.

Let G be a group and u € G. Suppose G is finitely generated by the
conjugates of p. An element A € G is said to be realizable if there exists a
virtual knot K and an onto homomorphism p : Gk (K) — G such that

p(m) = p and p(l) = A. Let Ag denotes the set of realizable elements in G. Is
Ac a non-empty set?



S. Kim results

@ S. G. Kim, Virtual knot groups and their peripheral structure, J. Knot Theory Ramifications
9 (2000), no. 6, 797-812.

Theorem

Every irreducible C'-group can be realized as a virtual knot group.

Neuwirth Problem for virtual knots

Let G be a group and u € G. Suppose G is finitely generated by the
conjugates of p. An element A € G is said to be realizable if there exists a
virtual knot K and an onto homomorphism p : Gk (K) — G such that

p(m) = and p(l) = A. Let Ag denotes the set of realizable elements in G. Is
Ac a non-empty set?

Theorem
The set Ac is a non-empty subgroup of G.

Theorem

Ae = G' N Z(u), where G’ is the commutator subgroup of G and Z(u) is the
centralizer of y in G.
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Let B, denotes the braid group on n strands.
» Generators: 01,02,...,0n_1,

» Relations:

0i0i410; = 0410041 for i € {1, 2,...,n— 2};

0;0; = ojo; where |i—j|>2 for 4,5 € {1,2,

1+ 1

1 i—1 1

i+2
Figure: Generator o;.
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Let F,, = (x1,22,...,Z,) be the free group of rank n.
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Let F,, = (x1,22,...,Z,) be the free group of rank n.
Artin representation: ¢ : B, — Aut(F’,) defined as

1
ICHE { Li 7 Ti%i1Z;

Tit1 > Tj.
Artin representation is a faithful representation.
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Virtual braid groups

The virtual braid group V' B,, is the group generated by
01,02, ...,0n—1,P1,P2,-- -, Pn—1 With following relations:

0:0i+105 = 034100541 for i € {1,2,...,n —2};
0:0; = 0;0; where |i—j|>2 for i,5€{1,2,...,n—1}
pr=1 for ie{1,2,...,n—1};
pip; = pjpi where |i—j|>2 for 4,5 €{1,2,...,n—1};
PiPi+1pi = pit1pipi+1 for 1€ {1,2,...,n—2};
oipj = pjo; where |i—j|>2 for 4,5 €{1,2,...,n—1}
PiPi+10s = Oip1pipi+1 for i € {1,2,...,n —2}.

1 i—1 1 i+1 142 n
Figure: Generator p;.
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» F,:=(x1,22,...,Zn) is the free group of rank n.

» F,1:= F, % Z, where Z = (v) is the free abelian group of rank 1.

» Fpn:= F, % Z", where Z" = (v1,v2,...,0y) is the free abelian group of
rank n.

» Fyntr = Fy « Z™ where Z"! = (v1,v2, ..., un, u) is the free group
of rank n + 1.

> [,2 = F, xZ? where Z®> = (u,v) is the free abelian group of rank 2.

2n+1 2n+1
> Fpont1 = Fy + Z2"T' where Z2" ! = (u1,ua, . .., Un, V0, V1, V2, . .., Un)
is the free abelian group of rank 2n + 1.

=] = = = = 9AE
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Two representations ¢ : V B,, — Aut(H) and ¢ : VB, — Aut(H) are said to
be equivalent if there exist an automorphism ¢ : H — H such that
W(B) = ¢t op(B) o) forall B € VB,.
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Generalized Artin representation: ¥4 : VB,, — Aut(Fn,1) is defined as

) oo -1
Va(r) : { Ti > TiTig1 T

Ti+1 — T,

’U_l
Ya(pi) { Ti 7 Tiga s

Tit+1 — .’L'f
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Generalized Artin representation: ¥4 : VB,, — Aut(Fn,1) is defined as
—1
i Tiip1%; o,
sz(m);{ Ti 7 BT

Ti+1 — T,

1
Ya(pi) { Ti 7 Tiga s
Silver-Williams representation: ¢¥sw : VB, — Aut(F, n+1) is defined as

Tit+1 — .’L'f
bsw (o) : Ti xixﬁlmfwi“, bsw(o9) : Ui > Uit1,
Y i e 2, U wigr e g,
XTi > Tit1,
Swipi) :
Ysw(pi) { Tiin o s

Ui > Uit1,
Ysw(pi) : { .

Uit+1 > Uj.
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Generalized Artin representation: ¥4 : VB,, — Aut(Fn,1) is defined as
Ya(oi) : {

-1
Ti = TiTi+1T;
Ti+1 — T,

Tit+1 — .’I}f
Ti > LT T
Ysw(o3) : { ‘ P

—VUG41
7 I

v

Tit1 — L5,

’U_l
Ya(pi) { Ti = iy
Silver-Williams representation: ¢¥sw : VB, — Aut(F, n+1) is defined as

Ysw(o3) : {
¢sw(pi) : { Ti = Titl,

Ui —> Ui+1,
Ui+1 > Us,
Ti+1 — Ty,

i > Uitd,
Ysw(pi) : { e i
Boden-Dies representation: ¢ : V B,, — Aut(Fy 2) is defined as

Uit1 = Ui
Ti > TiTi+1T,
/I//'BD(C'L') : { ¢ R L

u
Tit+1 — T, ,

o1
¥Bp(pi) : { Ti = iy

v
Ti+1 — T .
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The representation ¥as : V Bp — Aut(Fn,2n+1) is defined as:

—VoU41

w
Tib—> TiX, T, Vi > Vit1
Ym(oi):y " P ’ VICOER I, o
Tit1 — T, , Vi1 — Vs,
Ui —> Uj+1
Yu(oi):q ° o
Ui+1 > Uy,
=il
L) xi— ozl v = viga,
Yum(pi) 4 SR Y (pi) : { ) A
Tiy1 —> T, ", Vi1 — Vs,
. Ui —> Uit1,
Yu(pi) 1y _
Uit1 /> Uj.
This representation generalizes the previous representations.
[m] = = =
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A representation ¢ : VB,, — Aut(H) of the virtual braid group V' B,, into the

automorphism group of some group (or module) H = (h1,h2,...,hm || R)is
called virtually symmetric if for any generator p;, it = 1,2,...,n — 1, its image
©(pi) is a permutation of the generators hq, ha, ..., hm
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Virtually symmetric representations of V' B,,

Definition

A representation ¢ : VB, — Aut(H) of the virtual braid group V B, into the

automorphism group of some group (or module) H = (hi,ha,...,hm || R)is
called virtually symmetric if for any generator p;, i = 1,2,...,n — 1, its image
»(ps) is a permutation of the generators h1, ha, ..., hm.

Examples of representations equivalent to virtually symmetric representations

» Generalized Artin representation,
» Silver-William representation,
» Boden-Dies representation,

» Bardakov-Mikhalchishina-Neshchadim representation.
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Yn VB, — Aut(Frn2n41)
-1
= Ti > TiTiy1T; ~ Vi — Vit1,
gi) - o)
Y (o) { Tiit 2, Y (o3) { e s v,

Ui —> Ui+1,
Ui41 = Ui,

'l/‘;M(Uz {
P (pi) { Tit— x’“’ D (pi) : { Ui Vi,

Tit1 — T, Vit Vig1 — Ui,

i > Wi+t1,
Uit — Uy

’&M (pz
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The representation ¢y : VB, — Aut(F, ) is defined by the action on the
generators:

-1

Ti = TiTit1T; Vi = Vi+1,

o) : o) :
ou(01) { Tit1 = Ti, oue(01) { Vi1 = Vi,

vt

A T Xt N L) Ui Vi,

M : i+17 M .
dn(ps) Tit1 > m::’erl’ ¢ (pi) { Vit1 > Vj.
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Virtually symmetric representation equivalent to the previous representation

A virtually symmetric representation

The representation pas : VB, — Aut(F,, ) is defined as below is equivalent
to the representation ¢ : V Bn — Aut(Fn ).

vy —1
. Ti b Xy ‘Tiflkl z; . Vi > Vit1,
QDM(UZ') o Y (PM(O'i) : 5 = V;
Tig1 >z Vit1 7 Vi,
T — Ti+1, Vi — Vi+1,
©m\pPi) : on(pi) -
( ) Tit+1 — T4, ( ) Vi+1 > Vs.

We will use this representation to define virtual link groups and will show the
advantage of it over the previous representation which is not a virtually
symmetric representation.
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zi = um(B) (i), vi
G(IB) = (:IJ1,.’L'2,

Let B € V B,,. Define groups
GM(ﬂ) o= <$1,$2,...,$n,'01,'02,. <y Un | [’U;‘,’Uj] =1,

e (B)(vi), where 1<4,5 <n).
T, V1,02, ., 00 | [U5,05] = 1,

zi = P (B)(xi), vi
Gu(B) =G(B).

dn(B)(vi), where 1<4,j <n).
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Let B € V B,,. Define groups

Gu(B) := (z1,22,...,Tn,v1,V2,.

z; = pm(8) (@), vi

G(ﬁ) = <$1,$2, <.y Ln, V1, V2,

zi = om(6)(2:), vi =
Gu(B) =G(B).

—un | o] =1,
oM (B)(vi), where 1<4i,j<n).
Sn | v, o] =1,

dn(B)(vi), where 1<4,j <n).

If 3 € VB, and 8’ € V B,, are two virtual braids such that their closure define

the same link L, then G (8) =2 Gu(B'), i.e, the group G (B) is a link
invariant.

«0O>» «Fr «=)>r <
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Let D(L) be a virtual link diagram with m-components.

» Enumerate all components with integers from 1 to m.
| 4

Label each arc from one classical crossing to another classical crossing

with labels z1, 22, ..., 2Zn.
» Define the virtual link group G (D(L)) as
(T1,Z2 ..., Tn,V1,02,...,0m | R,[vi,v;] where 1l <1i,5<m),

«0O>» «Fr «=)>r <
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Virtual link group

The diagram approach
Let D(L) be a virtual link diagram with m-components.
» Enumerate all components with integers from 1 to m.

» Label each arc from one classical crossing to another classical crossing
with labels z1, x2,...,2n.

» Define the virtual link group G (D(L)) as

(T1,@2 ..., Tp,V1,02,...,0m | R, [vi,v;] where 1 <1,j<m),

it" component j'* component i*" component ;" component

a b

</ d
ositive egative irtua
Posit Negat Virtual

c=b", c=ab%a

—1)1'11'_1 vt 1;,i11v_1 _ vt
d=0b""" a" b""i . d=ai
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Gu(D(L)) and Gar(D(L')) are isomorphic. Hence Gar(D(L)) is an invariant
of L.

Let L be a virtual link, D(L) be its diagram, 3 be a braid such that its closure
B is equivalent to L, then Gy (D(L)) = Ga(B). Denote
Gum (L) := Gu(D(L)).

If D(L) and D(L') are two diagrams of a virtual link L, then groups

40> «Fr «=)» <
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Let D be a Gauss diagram representing the virtual link L having
m~components. Then enumerate the circles in D with integers from 1 to m.

Label the arc of circles as z1, z2, ..., xy, after cutting the circles at each
extreme points of arrows. Define the group

TD = (XT1,T2,...,Tn,V1,02,...,Um | [Vi,v;],R).
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Virtual link group

The Gauss diagram approach

Let D be a Gauss diagram representing the virtual link L having
m-components. Then enumerate the circles in D with integers from 1 to m.
Label the arc of circles as x1, 2, ..., Xy, after cutting the circles at each
extreme points of arrows. Define the group

TD i= (X1, T2y« oy Ty V1,02, « s Um | [V, 5], R).

In figure below a,d € set of arcs in i*"-circle and b, ¢ € set of arc in j-circle.

a C a C
J’_ —
d b d b
c="b" c=ab’ia!
-1 -1 -1 -1
d=0b""" a"% b"" d=a"

Figure: Relations at crossings.
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Let D be a Gauss diagram representing the link L. Then Gy (L) & 7p

L) ¥ 7p.
If in the group wp, we put v1 = vg = -+ = v, = 1, then we get the group
Gk (D).
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x2

x3|

2

-1

1w
= <$1,$2,.’L‘ , L4, || 2 =21,T4 =21 T o
— 1w
T3 = To,T1 =Ty X

1
Ta).

[m]

=

it
v
it
v

Q>
66 /86




x2

x3|

2

-1

v .
TI'D:<$1,$2,$3,$4,'U || To=1T1,T4 =1 T3 T1,

v 1
T3 = To,T1 = Xy X4

1
Ta).

[m]

=
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v
it
v
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A marked Gauss diagram consists of finite number of disjoint circles oriented
anticlockwise with finite number of signed arrows whose head and tail lie on
circles, and finite number of signed nodes lying on circles and not attach to
arrows.
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A marked Gauss diagram consists of finite number of disjoint circles oriented
anticlockwise with finite number of signed arrows whose head and tail lie on
circles, and finite number of signed nodes lying on circles and not attach to
arrows.
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Two marked Gauss diagrams are said to be equivalent if one can be

transformed to another by a finite sequence of marked Reidemeister moves.

Marked Reidemeister moves:= Reidemeister moves on Gauss diagrams +

v
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Two marked Gauss diagrams are said to be equivalent if one can be
transformed to another by a finite sequence of marked Reidemeister moves.

Marked Reidemeister moves:= Reidemeister moves on Gauss diagrams +
moves shown below.
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Group associated to a marked Gauss diagram

Group of a marked Gauss diagram

Let D be a marked Gauss diagram with m-components. Enumerate the circles

in D with integers from 1 to m. Label the arc of circles as x1, x2, . ...z, after
cutting the circles at nodes and at each each extreme points of arrows. Define
the group

HD = <JZ1,3;‘2, ceeyLn,V1,V2,...,Um | [’Ui,’l)j],R>,

where R is the set of relations corresponding to arrows and nodes shown below.
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Group associated to a marked Gauss diagram

Group of a marked Gauss diagram

Let D be a marked Gauss diagram with m-components. Enumerate the circles

in D with integers from 1 to m. Label the arc of circles as x1, x2, . ...z, after
cutting the circles at nodes and at each each extreme points of arrows. Define
the group

HD = (3:1,332, ceeyLn,V1,V2,...,Um | [’Ui, ’U]'],R>,

where R is the set of relations corresponding to arrows and nodes shown below.

th th -th th th
J J
a C a C (&
_|_ —
n
d b d b b
v, vy o —1 V!
c=1"b" c=ab"a c=1>b"
—vv;t vt et vt
d=b""" a’i b d=a’i
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x3

T+

€2

X4

x1

x5 ¢ w6
+
I = v _ -1 v 1 v
D—<$1,£B2,£L’3,$4,.’E5,$6,U || T2 =T1,T5 =T T4 T1,T3 = T2,
v —1 1 v
T4 =T3,T1 =Tz Tg L3,Te6 = Ts)
2 F5, thus D is a non-trivial marked Gauss diagram.
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Let us suppose we are on the k*" circle.

» Meridian: Take generator corresponding to any of the arcs in the k‘"-circle
of a given marked Gauss diagram, say z.
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Peripheral structure for marked Gauss diagrams

Let us suppose we are on the k" circle.

» Meridian: Take generator corresponding to any of the arcs in the k*"-circle
of a given marked Gauss diagram, say z.

» Longitude: Start moving from the meridian arc along the circle and write

v; when pass the tail of an arrow with sign € and whose head lies on the
t*"_circle, and when we pass the head of an arrow whose tail is on the

nthcircle and is the end point of arc z;, we use the following rule:
-1
» if arrow sign is +1, write v,{lz;}kv"

» if arrow sign is —1, write vnx;l.
And when we pass node with sign ¢, we write vi,. On coming back to the

meridian arc z, we write x~ %, where « is the sum of sign of arrows whose
head lies on the k**-circle.
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Peripheral structure for marked Gauss diagrams

Let us suppose we are on the k" circle.

|

| g

>

Meridian: Take generator corresponding to any of the arcs in the k*"-circle

of a given marked Gauss diagram, say z.

Longitude: Start moving from the meridian arc along the circle and write

v; when pass the tail of an arrow with sign € and whose head lies on the

t*"_circle, and when we pass the head of an arrow whose tail is on the

nthcircle and is the end point of arc z;, we use the following rule:
-

1
n

1,.%
x; ,

» if arrow sign is +1, write v,
» if arrow sign is —1, write vnx;l.
And when we pass node with sign ¢, we write vi,. On coming back to the
meridian arc z, we write x~ %, where « is the sum of sign of arrows whose
head lies on the k**-circle.

Peripheral pair: (m,1).
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Peripheral structure for marked Gauss diagrams

Let us suppose we are on the k" circle.

|

| g

Meridian: Take generator corresponding to any of the arcs in the k*"-circle
of a given marked Gauss diagram, say z.

Longitude: Start moving from the meridian arc along the circle and write
v; when pass the tail of an arrow with sign € and whose head lies on the
t*"_circle, and when we pass the head of an arrow whose tail is on the
nthcircle and is the end point of arc z;, we use the following rule:

v

1
n

1,.%
x; ,

» if arrow sign is +1, write v,
» if arrow sign is —1, write vnx;l.
And when we pass node with sign ¢, we write vi,. On coming back to the
meridian arc z, we write x~ %, where « is the sum of sign of arrows whose
head lies on the k**-circle.

Peripheral pair: (m,1).

Peripheral subgroup: Subgroup generated by meridian m and the

corresponding longitude [ in IIp.
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Peripheral structure for marked Gauss diagrams

Let us suppose we are on the k" circle.

|

| g

>

Meridian: Take generator corresponding to any of the arcs in the k*"-circle
of a given marked Gauss diagram, say z.

Longitude: Start moving from the meridian arc along the circle and write
v; when pass the tail of an arrow with sign € and whose head lies on the
t*"_circle, and when we pass the head of an arrow whose tail is on the

nthcircle and is the end point of arc z;, we use the following rule:
—1
> if arrow sign is +1, write v,{lz;}kv" ,

» if arrow sign is —1, write vnx;l.
And when we pass node with sign ¢, we write vi,. On coming back to the
meridian arc z, we write x~ %, where « is the sum of sign of arrows whose
head lies on the k**-circle.

Peripheral pair: (m,1).

Peripheral subgroup: Subgroup generated by meridian m and the

corresponding longitude [ in IIp.

Peripheral structure: Conjugacy class of peripheral pair.
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» Meridian m = x1.

. - -1, -2 —2
» Longitude | = vovv tzivv tasa? = vimiasa]
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Let m be a non-negative integer. A group G is called a C,,-group if it can be

defined by a set of generators Y = X U V,,, where X = {z1,%2,...,Zn},

—1
w, ;

Vin = {v1,v2,...,vm} and a set of relations R:
(2¥)

: 1
Tiw;,j = ;, for some x;,z; € X and some words wj; ; in Y
vivj; = vjv;, for all vi,v; € Vi,

«0)>» «F»
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Let m be a non-negative integer. A group G is called a C,,-group if it can be
defined by a set of generators Y = X U V,,, where X = {z1,%2,...,Zn},

Vin = {v1,v2,...,vm} and a set of relations R:
—1 _ oyl
w; i Tiw;,; = xj, for some x;,x; € X and some words wj,; in Y=

vivj; = vjv;, for all vi,v; € Vi,

A C,, group G, where m > 1, is said to irreducible if its abelianization of is of
rank 2m.

For example, if D is a marked Gauss diagram with m-components, then Ilp is
an irreducible C,,-group.



Any irreducible Ci-group can be realized as the group associated to a marked
Gauss diagrams.
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Results

Theorem (Bardakov-Neshchadim-Singh)

Any irreducible Ci-group can be realized as the group associated to a marked
Gauss diagrams.

Neuwirth Problem for marked Gauss diagrams

Let G be a group and p,v € G. Suppose G is finitely generated by v and
conjugates of p. An element A € G is said to be realizable if there exists a
1-circle marked Gauss diagram D and an onto homomorphism p : IIp — G
such that p(m) = p, p(v) = v and p(l) = . Let A¢ denotes the set of
realizable elements in G. Is A¢ a non-empty set?
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Results

Theorem (Bardakov-Neshchadim-Singh)

Any irreducible Ci-group can be realized as the group associated to a marked
Gauss diagrams.

Neuwirth Problem for marked Gauss diagrams

Let G be a group and p,v € G. Suppose G is finitely generated by v and
conjugates of p. An element A € G is said to be realizable if there exists a
1-circle marked Gauss diagram D and an onto homomorphism p : IIp — G
such that p(m) = p, p(v) = v and p(l) = . Let A¢ denotes the set of
realizable elements in G. Is A¢ a non-empty set?

Theorem (Bardakov-Neshchadim-Singh)

The set Ag is a non-empty subgroup of G.
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Thank you for the attention!
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