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Is it Knotted?




Published 1900. A Theory for construction of
' | ' Celtic Weaves.
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\ . . @ - a ‘ ! I now propose to explain how plaitwork is set out,

and the method of making breaks in it. When it is
i E x ‘ | required to fill in a rectangular panel with a plait the
In Pagan and Chrlstlan Tlmes four sides of the panel are divided up into equal parts
‘ (except at the ends, where half a
v division is left), and the points
: thus found are joined, so as to |
form a network of diagonal lines.
The plait is then drawn over these
lines, in the manner shown on
the accompanying diagram. The
setting-out lines ought really to
be double so as to define the [
width of the band composing
the piait, but they are drawn
single on the diagram in order
to simplify the explanation.

If now we desire to make a
break in the plait any two of the
cords are cut asunder at the point
where they cross each other, leaving four loose ends
A, B, C,D. To make a break the loose ends are joined
together in pairs. This can be done in two ways only:
(1) A can be joined to C and D to B, forming a vertical
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Regular plaitwork without
any break
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Method of making breaks in plaitwork
break ; or (2) A can be joined to D and C to B, forming

a horizontal break. The decorative effect of the plait is
thus entirely aitered by running two of the meshes
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83 Years Later ...
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Your lecturer wrote down the equation above (not
having read Romily Allen, who did not make his theory
into an equation) and this began, with the help of the
previously discovered Jones polynomial, a long
story of developing relationships among
topology, combinatorics, statistical mechanics, quantum
theory and more.

We will not enter this part of the story in this talk,
but a hint or two is worthwhile!




One can calculate information about knots and their
mirror images.
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The set of states in the
expansion of the bracket
are analagous to states
of a physical system.
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Around 998, Mikhail Khovanov viewed the states
as a category and found remarkable answers to the
question below.

The bracket states form a

/ J \ category. How can we
5 obtain topological
A BA N information from this

category?
KA L

Cubism




We stop here in the discussion of the development of
Khovanov Homology and other algebraic and physically
related methods in knot theory.

The rest of this talk is about how knots are related to
subjects magical, biological and physical.













Three-Coloring a Knot

The Rules:
Either three colors at a crossing,
OR
one color at a crossing.
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Figure 13 - Inheriting Coloring Under the Type Two Move
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Figure 14 - Coloring Under Type Two and Three Moves




Theorem. The Trefoil Diagram is Knotted.

Proof: Every diagram obtained
from the standard trefoil
by topological changes
uniquely inherits a three-coloring.

Since an unknot diagram can
have only one color; it follows

that the trefoil is a knot. Q.E.D.

Exercise: All diagrams topologically related to
the trefoil inherit three colors. No colors are
ever lost.
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Graphs, Diagrams and Reidemeister Moves

Reidemeister, I
Alexander and Briggs /() — 7

proved in the 1920’

that the three moves < /—> — > C
suffice for topological —

equivalence of knots

and links. mm //\/\ . \/X/_

Figure 2 - The Reidemeister Moves.




Borromean Rings

Green surrounds Red This coloring does not obey our rules.
Prove that there is no three coloring

Red surrounds Blue. of a diagram of the Rings by our rules.

Blue surrounds Green.

This implies that the rings are linked!

Why!?




Knotted DNA - Electron Micrograph, Protein
Coated DNA Molecule







DNA Knotting and Recombination
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Chromosome

Free nucleotides DNA polymerase
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This description of DNA replication ignores all the
topological difficulties.




Nature does not ignore the topological problems.
She solves them with Topoisomerase Enzymes that
cut strands to allow passage of strands and the control of
linking.







Lord Kelvin’s Vortex Atoms

Idea of knotted strings as fundamental constituents

of matter is old

Lord Kelvin and the
1867 string revolution:

atoms are knotted tubes of aether
- topological stability of knots = stability of matter

- variety of knots = variety of chemical elements

For decades considered as the theory of fundamental Matter

Maxwell: Kelvin’'s theory satisfies more of the
conditions than any atom hitherto

considered




Original drawing by Leadbeater

From the same period as Kelvin, the “vortex
atom’’ of the visionaries Besant and Leadbeater.




https://en.wikipedia.org/wiki/History of knot_ theory

Knots were studied from a mathematical viewpoint by Carl Friedrich Gauss, who in 1833
developed the Gauss linking integral for computing the linking number of two knots. His
student Johann Benedict Listing, after whom Listing's knot is named, furthered their study.
In 1867 after observing Scottish physicist Peter Tait's experiments involving smoke rings,
Thomson came to the idea that atoms were knots of swirling vortices in the aether. Chemical
elements would thus correspond to knots and links. Tait's experiments were inspired by a
paper of Helmholtz's on vortex-rings in incompressible fluids. Thomson and Tait believed
that an understanding and classification of all possible knots would explain why atoms
absorb and emit light at only the discrete wavelengths that they do. For example, Thomson
thought that sodium could be the Hopf link due to its two lines of spectra.[!]
Tait subsequently began listing unique knots in the belief that he was creating a table of
elements. He formulated what are now known as the Tait conjectures on alternating knots.
(The conjectures were proved in the 1990s.) Tait's knot tables were subsequently improved
upon by C. N. Little and Thomas Kirkman.[16
James Clerk Maxwell, a colleague and friend of Thomson's and Tait's, also developed a
strong interest in knots. Maxwell studied Listing's work on knots. He re-interpreted Gauss'
linking integral in terms of electromagnetic theory. In his formulation, the integral
represented the work done by a charged particle moving along one component of the link
under the influence of the magnetic field generated by an electric current along the other
component. Maxwell also continued the study of smoke rings by considering three
interacting rings.
When the luminiferous aether was not detected in the Michelson—Morley experiment, vortex
theory became completely obsolete, and

<-: [[knot theory ceased to be of great scientific interest]]. :->
Modern physics demonstrates that the discrete wavelengths depend on quantum energy
levels.




Knotted Vortices

Creation and Dynamics of Knotted Vortices

Dustin Kleckner! & William T. M. Irvine!

YJames Franck Institute, Department of Physics, The University of Chicago, Chicago, Illinois

60637, USA







micro-bubbles

FIG. 1. The creation of vortices with designed shape and topology. a, The conventional method for generating a vortex ring,
in which a burst of fluid is forced through an orifice. b, A vortex ring in air visualized with smoke. ¢, A vortex ring in water
traced by a line of ultra-fine gas bubbles, which show finer core details than smoke or dye. d-e, A vortex ring can alternatively
be generated as the starting vortex of a suddenly accelerated, specially designed wing. For a wing with the trailing edge
angled inward, the starting vortex moves in the opposite of the direction of wing motion f, The starting vortex is a result of
conservation of circulation — the bound circulation around a wing is balanced by the counter-rotating starting vortex. g, A
rendering of a wing tied into a knot, used to generate a knotted vortex, shown in h.










Vortex Reconnection




How superfluid vortex knots untie

Dustin Kleckner,! Louis H. Kauffman,? and William T. M. Irvine!

I James Franck Institute and Department of Physics,
The University of Chicago, Chicago, IL 60637, USA
®Department of Mathematics, Statistics and Computer Science,
University of Illinois at Chicago, Chicago, IL, 60607, USA

Knotted and tangled structures frequently appear in physical fields, but so do mechanisms for
untying them. To understand how this untying works, we simulate the behavior of 1,458 superfluid
vortex knots of varying complexity and scale in the Gross-Pitaevskii equation. Without exception,
we find that the knots untie efficiently and completely, and do so within a predictable time range.
We also observe that the centerline helicity — a measure of knotting and writhing — is partially
preserved even as the knots untie. Moreover, we find that the topological pathways of untying knots
have simple descriptions in terms of minimal 2D knot diagrams, and tend to concentrate in states
along specific maximally chiral pathways.




The quantum counterpart of smoke rings in air,
vortices in superfluids or superconductors are line-like
phase defects in the quantum wavefunction, ¥(x) =
V/ p(x)e?®)  where p and ¢ are the spatially varying den-
sity and phase (Figure le). This quantum wavefunction
can be mapped to a classical fluid velocity and density
via the Madelung transform: uw = V¢; p = |¢|* [15].
A simple description of the time evolution of this super-
fluid wavefunction is given by the Gross-Pitaevskii equa-
tion [16]; in a non-dimensional form it is given by:

dy T (2 2

W_ i (v )y, 1

L= (V- )¢ 1)
where in these units the quantized circulation around
a single vortex line is given by: I' = ¢§d€ - u = 2m.







Gross—Pitaevskii evolution by Irvine and Kleckner
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Figure 3: Saddles, Births and Deaths
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The WorldLine
of a reconnecting
knot is a surface

in 4-Space.
@ We can examine the
genus of the surface

Each hole corresponds to
two reconnections.

(the number of holes).

Figure 4: A Genus One Recombination Sequence
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trefoil knot.

Figure 6: 6, has two reconnections to the Trefoil.

Two reconnections from
6 2 to the trefoil and
two more to the unknot.

This is a physical
sequence
as in the simulation.
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Figure 5: Crossing Switch in Two Reconnections

&




SR

switch takes

One switch 6_2 to the unknot.
from 62 to the unknot. _

Hence two reconnections
from 65 to the
unknot.

Figure 7: By Switch 6, has two reconnections to the Unknot.




We have seen that a
physical sequence of
reconnections takes 6 2 to
the unknot in four steps.
But in principle this can be
done in two steps.We
expect this sort of
difference between physical
pathways of reconnection
and available topological
pathways.

This phenomenon is under
investigation! (LK and William
Irvine)




Lower Bounds for the Number of
Needed Reconnections for a
Knotted Vortex.

(LK and William Irvine)

Let R(K) be the least number of reconnections needed to
transform the knot K to a collection of unlinked circles.

There is a classical invariant of knots and links called
the Signature(K).

e.g. Signature(Trefoil) = -2 and Signature(é6_2) = -2
also.




Theorem. [Signature(K)| <= R(K).

Proof.
2(4-genus (K)) <= R(K)
(each hole is at least two reconnections)

|Signature(K)| <= 2(4-genus(K))
(a fact of classical knot theory)
Therefore |Signature(K)| <= R(K).
Q.E.D




About the Signature and Seifert Pairing

Let F' be a spanning surface in three-space for a knot link K. We define a linking number measure of
the embedding of F' via the Seifert paring defined as an assymetric bilinear form

@:Hl(F) XHl(F) — Z,

given by the formula
O(z,y) = Lk(z*,y)

Figure 8: Seifert Pairing for Surface Bounding Trefoil Knot

Signature is computed from the (symmetrized) Seifert
pairing.




Not all reconnections lead to production
of genus.

Consider a slice knot like the one below.
One reconnection is needed. No genus is produced.




This experiment by Aleeksenko (2016)
shows that it is not so unlikely to switch a crossing after all!


































Here is a spectacular collision of vortices.




Re =~ 1573




Are elementary particles knotted quantized flux?

PHYSICAL REVIEW D VOLUME 6, NUMBER 2 15 JULY 1972

Flux Quantization and Particle Physics

Herbert Jehle
Physics Depavtment, Geovge Washington University, Washington, D. C. 20006*

(Received 27 September 1971; revised manuscript received 27 December 1971)

Quantized flux has provided an interesting model for muons and for electrons: One closed
flux loop of the form of a magnetic dipole field line is assumed to adopt alternative forms
which are superposed with complex probability amplitudes to define the magnetic field of a
source lepton. The spinning of that loop with an angular velocity equal to the Zitterbewegung
frequency 2mc?/% implies an electric Coulomb field, (negative) positive, depending on (anti)
parallelism of magnetic moment and spin. The model implies CP invariance. A quark may
be represented by a quantized flux loop if interlinked with another loop in the case of a me-
son, with two other loops in the case of a baryon. Because of the link, their spinning is very
different from that of a single loop (lepton). The concept of a single quark does not exist ac-
cordingly, and it is seen that a baryon with a symmetric spin-isospin function in the SU(2)

x SU(3) quark representation might not violate the Pauli principle because the wave function
representing the relative position of linked loops may be chosen antisymmetric. Weak inter-
actions may be understood to occur when the flux loops involved in the interaction have to
cross over themselves or over each other. Strangeness is readily interpreted in terms of
the trefoil character of a A quark: Strangeness-violating interactions imply crossing of flux
lines and are thus weak and parity-nonconserving. AS=AQ is favored in such interactions.
Intrinsic symmetries may be interpreted in terms of topology of linked loops. Sections I

and II give a short résumé of the 1971 paper.




FIG. 2, A trefoil representing a neutrino loop which,
like a coasting three-bladed propeller, moves in a heli-
cal spinning motion in the direction of the spin axis. In
this and in subsequent figures, flux loops are drawn as
double lines merely to better visualize the form of the
loops. The loops are singular lines, the alternative
forms of which define fibration of space. The question
of orientation of the magnetic flux is still open; a neu-
trino might even be a superposition, not only of different
loopforms, but also of both signatures of magnetic flux
orientation. The difference between electron and muon
neutrino is discussed in Sec. IV and in Appendix II of
Ref. 1; the distinction is in regard to phase-related
versus random-phased probability amplitudes super-
position of the contributions of loopform bundles. A

single loop of this form never represents anything else
but a neutrino,

FIG. 4. Spinning-top model. A and N quark interlinked,
contributing to a meson, To illustrate the topological
(knot-theoretical) relationships of the two loops, space
is here subdivided by a toroidal surface [dashed lines in
Fig. 4(a) which show a doughnut cut in half]. The A is
located entirely outside this doughnut shaped surface,
the 9 entirely inside. This surface is dividing the fibrat-
ed space of A loopforms from that of 9 loopforms; this
toroidal interface may arbitrarily shrink or extend it-
self. Both loops pass through the spherical core region
which is indicated by the dashed circle; the two loops
may spin independently in a rolling-spinning motion
about both the circular and the straight axes.




Jumping forward many years:

Protons are made of quarks.
Quarks are bound by gluon field.
Glueballs are closed loops of
gluon field.

Can glueballs be knotted?!




arXiv:hep-th/0312133 vl 12 Dec 2003

Are Glueballs Knotted Closed Strings?
Antti J. Niemi*

Department of Theoretical Physics, Uppsala University,
Box 803, §-75 108 Uppsala, Sweden

May 29, 2006

Abstract

Glueballs have a natural interpretation as closed strings in Yang-Mills theory.
Their stability requires that the string carries a nontrivial twist, or then it is knot-
ted. Since a twist can be either left-handed or right-handed, this implies that
the glueball spectrum must be degenerate. This degeneracy becomes consistent
with experimental observations, when we identify the 7y (1410) component of the
n(1440) pseudoscalar as a 0~ glueball, degenerate in mass with the widely ac-
cepted 011 glueball f5(1500). In addition of qualitative similarities, we find that
these two states also share quantitative similarity in terms of equal production ra-
tios, which we view as further evidence that their structures must be very similar.
We explain how our string picture of glueballs can be obtained from Yang-Mills
theory, by employing a decomposed gauge field. We also consider various experi-
mental consequences of our proposal, including the interactions between glueballs
and quarks and the possibility to employ glueballs as probes for extra dimen-
sions: The coupling of strong interactions to higher dimensions seems to imply
that absolute color confinement becomes lost.




Universal energy spectrum of tight knots and links in physics*

Roman V. Buniy' and Thomas W. Kephart?
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA

We argue that a systems of tightly knotted, linked, or braided flux tubes will have a universal
mass-energy spectrum, since the length of fixed radius flux tubes depend only on the topology of
the configuration. We motivate the discussion with plasma physics examples, then concentrate on
the model of glueballs as knotted QCD flux tubes. Other applications will also be discussed.
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Figure 2: The second shortest solitonic flux configuration is the trefoil knot 3; corresponding to the
second lightest glueball candidate f((980).




Knotty inflation and the dimensionality of spacetime

Arjun Berera,l’ Roman V. Buniy,2’ Thomas W. Kephart,3’ Heinrich Pés,‘l’@ and Jodo G. Rosa® ¥

! Tait Institute, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ, United Kingdom
2Schmid College of Science, Chapman University, Orange, CA 92866, USA
3 Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
4 Fakultdt fir Physik, Technische Universitit Dortmund, 44221 Dortmund, Germany
® Departamento de Fisica da Universidade de Aveiro and CIDMA, Campus de Santiago, 3810-183 Aveiro, Portugal
(Dated: August 7, 2015)

We suggest a structure for the vacuum comprised of a network of tightly knotted/linked flux tubes
formed in a QCD-like cosmological phase transition and show that such a network can drive cos-
mological inflation. As the network can be topologically stable only in three space dimensions, this
scenario provides a dynamical explanation for the existence of exactly three large spatial dimensions
in our Universe.




Kephart and Buiny compared the ropelength of
knots to observed energy levels of glueballs and
found good correlations.




The previous demonstration as
made by Jason Cantarella,
using his program “ridgerunner”.

http://www.math.uga.edu/~cantarel/




Foundations of Physics, Vol. 31, No. 4, 2001

Knotted Zeros in the Quantum States of Hydrogen

Michael Berry!

Received January 8, 2001

Complex superpositions of degenerate hydrogen wavefunctions for the nth energy
level can possess zero lines (phase singularities) in the form of knots and links.
A recipe is given for constructing any torus knot. The simplest cases are constructed
explicitly: the elementary link, requiring n>=>6, and the trefoil knot, requiring
n>=7. The knots are threaded by multistranded twisted chains of zeros. Some
speculations about knots in general complex quantum energy eigenfunctions are
presented.

These speculations can be extended to topologies of phase singularity
that are not included in the class of torus knots. For example, one can ask
whether quantum states can contain zero lines in the form of Borromean
rings, ") where three unknotted loops are connected even though no two
are linked.




Mobius Strip Particles

A Visualizable Representation of the Elementary Particles

J.S. Avrin*

Abstract

Rudimentary knots are invoked to generate a representation of the elementary particies, a
model that endows the particles with visualizable structure. The model correlates with the basic
tenets, taxonomy, and interactions of the Standard Model, but goes beyond it in a number of
important ways, the most significant being that all particles (hadrons and leptons, fermions and
bosons) and interactions share a common topology. Among other consequences of the modeling
are the topological basis for isospin invariance and its connection to electric charge, the necessary
identity of electron and proton charge magnitudes, and the existence of precisely three
generations on the particle family tree. The salient feature of the model is that the elementary
particles are viewed not as discrete, point-like objects in a vacuum but rather as sustainable,
membrane-like distortions embodying curvature and torsion in and of an otherwise featurcless
continuum and that their manifest physical attributes correlate with the distortion. There are
additional connections to the theories of fiber bundles, superstrings and instantons and,
historically, to the work of Kelvin in the mid-nineteenth century and Cartan in the 1920s among
others.

(published in Journal of Knot Theory
and lts Ramifications)
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A topological model of composite preons

Sundance O. Bilson-Thompson*
Centre for the Subatomic Structure of Matter, Department of Physics,
University of Adelaide, Adelaide SA 5005, Australia
(Dated: October 27, 2006)

We describe a simple model, based on the preon model of Shupe and Harari, in which the binding
of preons is represented topologically. We then demonstrate a direct correspondence between this
model and much of the known phenomenology of the Standard Model. In particular we identify the
substructure of quarks, leptons and gauge bosons with elements of the braid group Bs. Importantly,
the preonic objects of this model require fewer assumed properties than in the Shupe/Harari model,
yet more emergent quantities, such as helicity, hypercharge, and so on, are found. Simple topological
processes are identified with electroweak interactions and conservation laws. The objects which play
the role of preons in this model may occur as topological structures in a more comprehensive theory,
and may themselves be viewed as composite, being formed of truly fundamental sub-components,
representing exactly two levels of substructure within quarks and leptons.
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The Braided Belt Trick

The mathematics of Sundance Bilson’s
approach to elementary particles
based on the ‘braided belt trick”

shown in the next slide.

This trick is also the basis for
making braided leather belts.




Begin by cuttingtwo Holding the top flat,

slits into a strip of pull string C
leather. overstring B,
and pull string A

Be careful not to cutall

the way to the ends. overstring C.

Now pull string A Untangle the bottom
overstring C, portion by sliding the
and pull string B bottom end through

overstring A. the open slits.

Next,

pull string B
over string A,
and pullstring C
over string B.

Continue this pattern
until the braid reaches
the bottom of the strip.
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This approach to elementary particle
physics is just beginning.
We will have to wait and see
if elementary particles are
braids and if knotted glueballs
are real.

After all,
Why Knot!?




Is the Geometric Universe
a Poincare Dodecahedral Space!?

retu rn/

A franco-american team of cosmologists [1] led by J.-P. Luminet, of the Laboratoire Univers et Théories (LUTH) at the Paris
Observatory, has proposed an explanation for a surprising detail observed in the Cosmic Microwave Background (CMB) recently
mapped by the NASA satellite WMAP. According to the team, who published their study in the 9 October 2003 issue of Nature, an
intriguing discrepancy in the temperature fluctuations in the afterglow of the big bang can be explained by a very specific global
shape of space (a "topology"). The universe could be wrapped around, a little bit like a "soccer ball", the volume of which would
represent only 80% of the observable universe! (figure 1) According to the leading cosmologist George Ellis, from Cape Town
University (South Africa), who comments on this work in the "News & Views" section of the same issue: "If confirmed, it is a
major discovery about the nature of the universe".




The Poincare Dodecahedral space is
obtained by identifying opposite
sides of a dodedahedron with
a twist.

The resulting space, if you were inside it,
would be something like the next slide.
Whenever you crossed a pentagonal face,
you would find yourself back in
the Dodecahedron.










What Does This Have
to do with Knot Theory!?

The dodecahedral Space M has ‘
Axes of Symmetry: \
five-fold, three-fold and two-fold. renr, <

The dodecahedral space M is the
5-fold cyclic branched covering
of the three-sphere, branched along the
trefoil knot.

CK
M =Variety(x"2 + yA3 + zN5)
Intersected with SAS5 in CA3.







So perhaps the trefoil knot is the
key to the universe.




Thank you for your attention




Knots and Quantum Field Theory




From Feynman’s Nobel Lecture

The character of quantum mechanics of the day was to write things in the famous
Hamiltonian way - in the form of a differential equation, which described how the wave
function changes from instant to instant, and in terms of an operator, H. If the classical
physics could be reduced to a Hamiltonian form, everything was all right. Now, least
action does not imply a Hamiltonian form if the action is a function of anything more than
positions and velocities at the same moment. If the action is of the form of the integral of
a function, (usually called the Lagrangian) of the velocities and positions at the same time

S=[L(x x)dt

then you can start with the Lagrangian and then create a Hamiltonian and work out the
quantum mechanics, more or less uniquely. But this thing (1) involves the key variables,
positions, at two different times and therefore, it was not obvious what to do to make the
quantum-mechanical analogue.

L = Kinetic Energy - Potential Energy

Classical Mechanics: Extremize Integral of L over the
paths from A to B.




So that didn't help me very much, but when I was struggling with this problem, I went to
a beer party in the Nassau Tavern in Princeton. There was a gentleman, newly arrived
from Europe (Herbert Jehle) who came and sat next to me. Europeans are much more
serious than we are in America because they think that a good place to discuss intellectual
matters is a beer party. So, he sat by me and asked, "what are you doing" and so on,
and I said, "I'm drinking beer." Then I realized that he wanted to know what work I was
doing and I told him I was struggling with this problem, and I simply turned to him and
said, "listen, do you know any way of doing quantum mechanics, starting with action -
where the action integral comes into the quantum mechanics?" "No", he said, "but Dirac
has a paper in which the Lagrangian, at least, comes into quantum mechanics. I will show
it to you tomorrow."




Next day we went to the Princeton Library, they have little rooms on the side to discuss
things, and he showed me this paper. What Dirac said was the following: There is in
quantum mechanics a very important quantity which carries the wave function from one
time to another, besides the differential equation but equivalent to it, a kind of a kernal,
which we might call K(x’, x), which carries the wave function j(x) known at time t, to the
wave function j(x') at time, t+e Dirac points out that this function K was analogous to the

quantity in classical mechanics that you would calculate if you took the exponential of ie,

multiplied by the Lagrangian L (%,x) imagining that these two positions x,x’ corresponded
t and t+e. In other words,

cop (X=X

K{(x",x) is analogous to ¢ LE i

Professor Jehle showed me this, I read it, he explained it to me, and I said, "what does
he mean, they are analogous; what does that mean, analogous? What is the use of that?"
He said, "you Americans! You always want to find a use for everything!" I said, that I
thought that Dirac must mean that they were equal. "No", he explained, "he doesn't mean
they are equal." "Well", I said, "let's see what happens if we make them equal."




So I simply put them equal, taking the simplest example where the Lagrangian is ¥2Mx? -
V(x) but soon found I had to put a constant of proportionality A in, suitably adjusted.
When I substituted Aef€L/H for K to get

w(x', 1+€) = f.-l cxp[% L (x :\ \)] w(x, f) dx

and just calculated things out by Taylor series expansion, out came the Schrédinger
equation. So, I turned to Professor Jehle, not really understanding, and said, "well, you
see Professor Dirac meant that they were proportional." Professor Jehle's eyes were
bugging out - he had taken out a little notebook and was rapidly copying it down from the
blackboard, and said, "no, no, this is an important discovery. You Americans are always
trying to find out how something can be used. That's a good way to discover things!" So,
I thought I was finding out what Dirac meant, but, as a matter of fact, had made the
discovery that what Dirac thought was analogous, was, in fact, equal. I had then, at least,
the connection between the Lagrangian and quantum mechanics, but still with wave
functions and infinitesimal times.




The Taylor expansion is

—i1eV (x)
e n im? oY(z,t)  n° 0*P(x,t)
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Now use the Gaussian integrals
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This rewrites the Taylor series as follows.
2mwhet
m ieV(a) fiei 0% )
Y(z,t+¢€) = a1 ¢ W(iﬂat)Jr%W +O(x7)].
Taking
2mhet
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we get

Ol 1) + D, 1)/0t = Y1) — V(2o 0) + b0/ 0a”

Hence 1(x,t) satisfies the Schrodinger equation.




Integration without integration

If the function h(x) vanishes as x goes to infinity, then we have that

/ fdx = / gdzx

when f — g = dh/dx. This suggests turning things upside down and defining an equiva-
lence relation on functions

f~g
if
f—g=dh/dx

where h(z) is a function vanishing at infinity. Then we define the integral

[ f@)

to be the equivalence class of the function f(x).




We shall say that f(x) is rapidly vanishing at infinity if f(x) and all its derivatives are
vanishing at infinity. For simplicity, we shall assume that all functions under consideration
have convergent power series expansions so that

fla+J)=f@)+ (@) + () ]2 /2! +-- -

and that they are rapidly vanishing at inﬁnity It then follows that

fle+J) = f(z)+ [()J+f()J2/2!+'“]~f($),

and hence we have that [ f(z + J = | f(z), giving translation invariance when .J is a
constant.

e.g.

2 2 2 2 2 2 2
et [2+Jx __ 6—(:16—.]) [24+J7 /2 _ eJ /26—(:B—J) /2 6J /26—:15 /27

2 2 2
/e—x /24+Jx :GJ /2/6 T /2.

whence




Witten’s Integral

In [49] Edward Witten proposed a formulation of a class of 3-manifold in-
variants as generalized Feynman integrals taking the form Z(M) where

Z(M) = /DAe(ik:/sz)S(M,A)-

Here M denotes a 3-manifold without boundary and A is a gauge field (also
called a gauge potential or gauge connection) defined on M. The gauge field
is a one-form on a trivial G-bundle over M with values in a representation of
the Lie algebra of GG. The group G corresponding to this Lie algebra is said
to be the gauge group. In this integral the action S(M, A) is taken to be
the integral over M of the trace of the Chern-Simons three-form A A dA +
(2/3)AN AN A. (The product is the wedge product of differential forms.)




With the help of the Wilson loop functional on knots and links, Witten
writes down a functional integral for link invariants in a 3-manifold M:

Z(M,K) = / D AGHAMSOLAY (P A)

= /DAe(ik/4”)5 < K|A>.

A(x) = A% ()T,

The gauge field is a Lie-a
one-form on 3-s

The next slide discusses t

gebra valued
Dace.

ne nature of the

Wilson Loop.
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Think of a vector on the knot.As the base of the vector
moves by dx the vector changes to (I + A)v. This is
the analog of parallel translation. The gauge field is a
connection!
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This diagram defines a symbol for dx .

It shows the formula for differentiating a Wilson loop.




= Eiji = 3/ A§x)

z = curvature tensor

Chern - Simons Lagrangian




Curvature is
dA + AMA.

The Chern-Simons Lagrangian is
L = AMdA + (2/3)AMNANA.

Differentiating L with respect to A
yields curvature.
(But you have to do it in detail to really see this.)




W
SW_a=W_7g™ - W _n =

By an interesting calculation,
one finds that if you change the loop by a small amount,
then the Wilson loop changes by an insertion of
Lie algebra coupled with the curvature tensor.

This is just like classical differential geometry
where parallel translation around a small loop
measures curvature.




Curvature enters in when one evaluates the varying
Wilson loop.




We can put all these facts together
and find out how Witten’s Integral
behaves when we vary the loop.

The next slide tells this story
in Diagrames.







>2Z) -- (1/k>ge Q}VW@%

When you vary the loop,
Witten’s integral changes by
the appearance of the volume form

QX}

and a double Lie algebra insertion.




There will be no change if the the
volume form is zero.
This can happen if the loop deformation
does not create volume.
That is the case for the
second and third Reidemeister moves
since they are “planar”.

Hence we have shown (heuristically) that
L isaninvariant of “regular isotopy”
just like the bracket polynomial.




Z\/\

- (c/k)Z + 0(1/k%)

AR

This is what happens when you
switch crossings.
You get a “‘skein relation”
involving Lie algebra insertions.

This formula leads directly to the subject of Vassiliev
invariants, but we will not discuss that in this talk.
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The Loop Transform: Start with a function defined on
gauge fields. Integrate it against a Wilson loop
and get a function defined on knots.
Transform differential operations from
the category of functions on gauge fields to
the category of functions on knots.




-
I

i 5¥() ﬁA GYW,, = ﬁAT GW

This differential operator occurs in the loop

quantum gravity theory of Ashtekar, Rovelli
and Smolin.

Its transform is the geometric variation of the loop!




The loop transform enabled
Ashtekar, Rovelli and Smolin to

see that the exponentiated

Chern-Simons Lagrangian could be seen
as a state of quantum gravity
and

that knots are fundamental

to this approach to a theory of
quantum gravity.




Knots, Links and Lie Algebras
Vassiliev Invariants
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Chord Diagram




Four-Term Relation From Topology
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Four Term Relation from Lie Algebra
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FIGURE 12. Calculating Lie Algebra Weights.




The Jacobi Identity

a b a b
b c
BN
2eb ?_a.b a 0~ (aeb)ec
b c b c
>< boC\
a 200 > (a.c).b a a.(b.C)
[, - X - Y

(aeb)ec - (aecC)eb = ae(bec)
Hence
(aeb)eC + be(aec) = ae(bec).




Lie algebras and Knots are linked
through the Jacobi ldentity.

This is part of a mysterious
connection
whose roots we do not yet fully
understand.




