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on a nilpotent Majorana-Dirac Equation)




A possible sighting of
Majorana states

Nearly 80 years ago, the Italian physicist
Ettore Majorana proposed the existence of
an unusual type of particle that is its own
antiparticle, the so-called Majorana
fermion. The search for a free Majorana
fermion has so far been unsuccessful, but
bound Majorana-like collective excitations
may exist in certain exotic
superconductors. Nadj-Perge et al. created
such a topological superconductor by
depositing iron atoms onto the surface of
superconducting lead, forming atomic
chains (see the Perspective by Lee). They
then used a scanning tunneling microscope
to observe enhanced conductance at the
ends of these chains at zero energy, where
theory predicts Majorana states should
appear.



AVery Elementary Particle -

Fusion Rules for a Majorana Fermion
P\ / P P\ / P

P *

The “particle” P interacts with P
to produce either P or *.
*is neutral.



For a Standard Fermion there is a
an annihilation operator F
and a creation operator F*.

These correspond to the fact that
the antiparticle is distinct from the
particle.

We have FF = F*F* =0 (Pauli Exclusion)
and
FF* + F*F = |.
Later in the talk we will see
much more about this relation.



Majorana and Clifford Algebra

The Creation/Annihilation algebra for a
Majorana Fermion is very simple.
Just an element a with aa =|I.
If there are two Majorana Fermions, we have
a,b
with aa = |, bb=I and
ab +ba = 0.

A Clifford Algebra.

Algebraic Justification of this
Statement Follows...



Majorana Fermions are their own antiparticles.

An Electron’s creation and annihilation operators are
combinations of Majorana Fermion operators:

U=(+ib)/2 and U*=(a-ib)/2

where ab+ba = 0 and aa =bb=]1.



U=(a+ib)/2 and U*=(a-ib)/2

4UU = (at+ib)(atib)
= aa -bb +i(ab + ba)

UU= 0
U*U* = 0.
UU* +U*U = (U + U*)(U+U*) = aa = |

This is the creation/annihilation algebra for an
electron.



lconics

This next part is motivated by G. Spencer-Brown’s
invention of a ‘logical particle’ that interacts with
itself to either confirm itself or to cancel itself.
This interaction, combined with recursion, leads both
to matrix algebra and the very elementary mathematics
of a Majorana Fermion.



The Mark is a logical particle
(Laws of Form by G. Spencer-Brown)
that interacts with itself either to annihilate itself, or to
produce itself.
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The Mark is a “logical particle” for a level of logic
deeper than Boolean Logic.
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In this formalism the mark is seen
to make a distinction in the plane.
The formal language of the
calculus of indications refers to the mark and is
built from the mark.

The language using the mark is inherently self-
referential.

The Calculus writes itself in terms of
itself.



The first distinction, the mark, and the observer are not
only interchangeable, but, in the form, identical.



Formally, we can distinguish
the two interactions via
adjacency and concentricity.
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The Majorana P is a Fibonacci Particle

PA2 =% + P

PA3 = P*+ PP =P + % + P =% + 2P
PA4 = P + 2% + 2P = 2% + 3P

PAS = 3% + 5P

PA6 = 5% + 3P

PA7 = 8% + 5P



" Fibonacci Processes
from
Self-Interaction of P,

P

/\ o
P *\ PP=P + *
P % P PPP= 2P + *

N PPPP = 3P + 2*

P x PP



Note that we have shown how the formalism of the
mark, as logical particle is coherent with its interpretation
as a Majorana Fermion.
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Fermion Algebra Directly From Re-entering Mark
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We introduce a temporal shift operator n such that

[a, b]n = nb, a
and
nmm =1

for any iterant [a, b], so that concatenated observations can include a time step of one-half period

of the process
-« -abababab - - - .

We combine iterant views term-by-term as in
la, b][c, d] = [ac, bd].

We now define i by the equation
i=[1,—1]n.
This makes ¢ both a value and an operator that takes into account a step in time.

We calculate

= [17 _1]77[17 _1]77 - [17 _1”_17 1]7777 - [_17 _1] = -1






At this point we see that it is not just the
square root of minus one that has emerged from
the structure of the oscillation, but the simple
non-commutative algebra of the split quaternions.

In fact, we have uncovered matrix algebra.

But note that we have shown that the Fermion
algebra is primordial, related just to the oscillation
of a distinction. The Clifford algebra occurs at the

Arithmetic level with its extended polarity of

-1,0, +1.

Note also that -0 = 0 so that at the arithmetic level,
0 becomes re-entrant.



SpaceTime

Temporality is the tempo of pattern.
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At this stage we have shown how the Clifford
algebra generated by e and eta (the split
quaternions) emerges naturally from the discrete
dynamics of the square root of minus one.
Dynamics of the reentering
mark.

The mark embodies the fusion algebra for a
Majorana Fermion. It can interact with itself to
either produce itself or annihilate itself.



A row of n electrons can be regarded as a row of 2n
Majorana Fermions.

Recent work suggests that Majorana Fermions
can be detected in nanowires.



Unpaired Majorana fermions in quantum wires

Alexei Yu. Kitaev*
Microsoft Research
Microsoft, #113/2032, One Microsoft Way,
Redmond, WA 98052, U.S.A.

kitaev@microsoft.com

27 October 2000
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Figure 2: Two types of pairing.

Note that the state |1)g) has an even fermionic parity (i. e. it is a superposition
of states with even number of electrons) while |¢);) has an odd parity. The
parity is measured by the operator

P = H ZCQ‘7 162] (9)



Non-abelian statistics of half~-quantum vortices in p-wave superconductors

D. A. Ivanov
Institut fiir Theoretische Physik, ETH-Honggerberg, CH-8093 Zirich, Switzerland
(May 11, 2000)

Excitation spectrum of a half-quantum vortex in a p-wave superconductor contains a zero-energy
Majorana fermion. This results in a degeneracy of the ground state of the system of several vortices.
From the properties of the solutions to Bogoliubov-de-Gennes equations in the vortex core we derive
the non-abelian statistics of vortices identical to that for the Moore-Read (Pfaffian) quantum Hall
state.

FIG. 3. Elementary braid interchange of two vortices.



On the Dynamical detection of Majorana fermions in current-biased nanowires

Fernando Dominguez,’ Fabian Hassler,?2 and Gloria Platero!

!Instituto de Ciencia de Materiales, CSIC, Cantoblanco, E-28049 Madrid, Spain
“Institute for Quantum Information, RWTH Aachen University, 52056 Aachen, Germany
(Dated: October 29, 2012)

We analyze the current-biased Shapiro experiment in a Josephson junction formed by two one-
dimensional nanowires featuring Majorana fermions. Ideally, these junctions are predicted to have
an unconventional 47-periodic Josephson effect and thus only Shapiro steps at even multiples of the
driving frequency. Taking additionally into account overlap between the Majorana fermions, due to
the finite length of the wire, renders the Josephson junction conventional for any dc-experiments.
We show that probing the current-phase relation in a current biased setup dynamically decouples
the Majorana fermions. We find that besides the even integer Shapiro steps there are additional
steps at odd and fractional values. However, different from the voltage biased case, the even steps
dominate for a wide range of parameters even in the case of multiple modes thus giving a clear
experimental signature of the presence of Majorana fermions.
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FIG. 1: Josephson junction with a nanowire on top. Red spots
(color online) represent Majorana fermions. Double arrows
represent the overlap between the Majorana fermions.



Majorana (real) Fermions

S5/ Usual (complex) fermions

y=(f"+)/\2 myp y=y* y’=1
"half" of the usual (complex) fermion

f=W, +iy,)/ V2 "real" fermion
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Semiconducting wire

X

s-wave superconductor

a, Pictorial representation of the ground state of equation (1) in the limit =0, t=|A|. Each spinless fermion in the chain is decomposed in terms of two Majorana
fermions ya x and yg x. Majoranas yg x and ya x+1 combine to form an ordinary, finite-energy fermion, leaving two zero-energy end Majoranas yx 1 and yg y as
shownZ. b, A spin—orbit-coupled semiconducting wire deposited on an s-wave superconductor can be driven into a topological superconducting state exhibiting
such end Majorana modes by applying an external magnetic field?!: 22. ¢, Band structure of the semiconducting wire when B=0 (dashed lines) and B # 0 (solid
lines). When p lies in the band gap generated by the field, pairing inherited from the proximate superconductor drives the wire into the topological state.




Braiding Majorana Fermions
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Non-abelian statistics of half-quantum vortices in p-wave superconductors

D. A. Ivanov
Institut fiir Theoretische Physik, ETH-Hdénggerberg, CH-8093 Zirich, Switzerland
(May 11, 2000)

Excitation spectrum of a half-quantum vortex in a p-wave superconductor contains a zero-energy
Majorana fermion. This results in a degeneracy of the ground state of the system of several vortices.
From the properties of the solutions to Bogoliubov-de-Gennes equations in the vortex core we derive
the non-abelian statistics of vortices identical to that for the Moore-Read (Pfaffian) quantum Hall
state.

FIG. 3. Elementary braid interchange of two vortices.




lvanov’s Braiding Operators

Let al,a2,a3,...,a2n be Majorana Fermions.

S(i) = (I +a(i+1)a(i))/Sqrt(2)
SA(i) = (I - a(i+1)a(i))/Sqrt(2)
The operators S(i) form a unitary representation of the
Artin Braid Group:
S(i)S(i+1)S(i) = S(i+ 1)S(i)S(i+ 1)
S(i)S(j) = S(j)S(i) when |i=j|>2.

Operators T (i) act on the space of MF’s
via T(i)x = S(i) x SA(i).

T(i)a(i) = a(i+1)
T(iya(i+1) = - a(i).






Clifford Braiding Theorem. Let C be the Clifford algebra over the real numbers
generated by linearly independent elements {ci, cz,...c,} with c; = 1 for all k and
ckcr = —cicg for k # 1. Then the algebra elements 7, = (1+ck+1¢k)/ V2, form a rep-
resentation of the (circular) Artin braid group. That is, we have {7y, 72,...Th—_1,Tn}
where 7, = (1 + cpy1ck)/V2 for 1 < k < nand 7, = (1 + ¢1¢,)/V?2, and
TkTk+1Tk = Tk+1TkTk+1 for all k and 7,7; = 77 when [ — j| > 2. Note that
each braiding generator 7, has order 8.



It is worth noting that a triple of Majorana fermions say a, b, c gives rise to a representation
of the quaternion group. This is a generalization of the well-known association of Pauli matrices
and quaternions. We have a® = b*> = ¢* = 1 and they anticommute. Let [ = ba, J = cb, K = ac.

Then
P=7r=K=1JK =—1,

giving the quaternions. The operators

A= (1/V2)(1+1)

B=(1/vV2)(1+J)
C = (1/v2)(1 + K)
braid one another:
ABA = BAB,BCB =CBC,ACA =CAC.

A X //B
/ A
A/ -\ B




Majoranas are related to standard fermions as follows: The algebra for Majoranas is ¢ = ¢!

and ¢’ = —c/cif c and ¢ are distinct Majorana fermions with ¢ = 1 and ¢’> = 1. One can make
a standard fermion from two Majoranas via

Y= (c+id)/2,

Yl = (c —id))2.

Similarly one can mathematically make two Majoranas from any single fermion. Now if you take
a set of Majoranas

{Cla C2,C3, " " 7cn}

then there are natural braiding operators that act on the vector space with these c;, as the basis.
The operators are mediated by algebra elements

= (1+ Ck+lck)/\/§>

o= (1= cppicr)/V2.

Then the braiding operators are
Tk : Span{cla Coy vty ,Cn} E— Span{cl7 Coy -y 7C7L}

via
Ti(z) = TkITk_l.



Braiding Majorana Fermions
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Now we show how the Majorana Fermion
algebra is at the base of the Dirac equation, and
how nilpotent operators (representing Fermions)
arise naturally in relation to plane wave solutions
to the Dirac equation.

5.2 Relativity and the Dirac Equation

Starting with the algebra structure of e and 1 and adding a commuting square root of —1, 7, we
have constructed fermion algebra and quaternion algebra. We can now go further and construct
the Dirac equation. This may sound circular, in that the fermions arise from solving the Dirac
equation, but in fact the algebra underlying this equation has the same properties as the creation
and annihilation algebra for fermions, so it is by way of this algebra that we will come to the
Dirac equation. If the speed of light is equal to 1 (by convention), then energy £, momentum p
and mass m are related by the (Einstein) equation

E? :p2+m2.



Dirac constructed his equation by looking for an algebraic square root of p? 4+ m? so that he could
have a linear operator for £ that would take the same role as the Hamiltonian in the Schrodinger
equation. We will get to this operator by first taking the case where p is a scalar (we use one
dimension of space and one dimension of time. Let &/ = ap + #m where « and (3 are elements
of a a possibly non-commutative, associative algebra. Then

E? = o®p* + m? + pm(af + Ba).

Hence we will satisfiy £ = p?> +m? if o = 32 = 1 and o3 + Sa = 0. This is our familiar
Clifford algebra pattern and we can use the iterant algebra generated by e and 7) if we wish. Then,
because the quantum operator for momentum is —i0/Jx and the operator for energy is i0/0t, we
have the Dirac equation

0 [0t = —iad) [0z + Sma).

Let
O =1i0/0t + iad/0x — fm

so that the Dirac equation takes the form

OyY(x,t) = 0.



Now note that
Oei(pm_Et) — (E —ap — ﬁm)ei(pm—Etx

We let
A= (E—ap—pm)
and let
U=Afa=(FE—ap—pm)ba=paE + Bp+ am,
then

U?=—-E?+p*+m?=0.

This nilpotent element leads to a (plane wave) solution to the Dirac equation as follows: We have
shown that
Oy = Ay

for ¢ = *®P*=EY) Tt then follows that
O(BaABarp) = ABalfay = U = 0,

from which it follows that
¢ _ ﬁ&Uei(px—Et)

is a (plane wave) solution to the Dirac equation.



Recapitulation and One More

We start with ¢ = !®*=F%) and the operators

E =id/d,
and
p= _Za/am
so that
Ev = Ev
and
pY = py.

The Dirac operator is

A~

O=FE—ap—pPm
and the modified Dirac operator is
D:Oﬁazﬁaﬁ—l—ﬁﬁ—am,

so that
Dy = (BaE + fp — am)p = Uy.



D(Uei(px—Et)) _ U2€i(px—Et) — 0.

We have arrived at
Peter Rowland’s Nilpotent Solutions
to the Dirac Equation.



If we let
ZL _ ei(pm—i—Et)

(reversing time), then we have
Dy = (—fak + fp — am)y = Uy,
giving a definition of U corresponding to the anti-particle for U1).

We have that
U>=U"=0

and
UUt + UtU = 4E2.

Thus we have a direct appearance of the Fermion algebra corresponding to the Fermion plane
wave solutions to the Dirac equation.



Note that we get different decompositions of the
Fermion into Majorana operators according to what
is reversed.

{E} and {p,m} for time reversal.
{p} and {E,m} for spin reversal.
{E,p} and {m} for spin and time reversal.



In analogy to our previous discussion we let
w(x’ t) _ ei(pom—Et)

and construct solutions by first applying the Dirac operator to this ). The two Clifford algebras
interact to generalize directly the nilpotent solutions and Fermion algebra that we have detailed
for one spatial dimension to this three dimensional case. To this purpose the modified Dirac
operator is

D = ifad/dt + fV e g — am.
And we have that

Dyp = Ut

where

U=palk+ (fpeoc— am.

We have that U? = 0 and U} is a solution to the modified Dirac Equation, just as before. And just
as before, we can articulate the structure of the Fermion operators and locate the corresponding
Majorana Fermion operators. We leave these details to the reader.



The Majorana-Dirac Equation

There 1s more to do. We will end with a brief discussion making Dirac algebra distinct from the
one generated by «, 3, 01, 09, 03 to obtain an equation that can have real solutions. This was the
strategy that Majorana [7] followed to construct his Majorana Fermions. A real equation can have
solutions that are invariant under complex conjugation and so can correspond to particles that are
their own anti-particles. We will describe this Majorana algebra in terms of the split quaternions
e and 7). For convenience we use the matrix representation given below. The reader of this paper
can substitute the corresponding iterants.

=(91)=(To)

Let € and 7) generate another, independent algebra of split quaternions, commuting with the first
algebra generated by e and 7). Then a totally real Majorana Dirac equation can be written as
follows:

(0/0t +1md/0x + €0/dy + énd/dz — énmm)h = 0.

To see that this is a correct Dirac equation, note that

A

E= a:rpr + O4ypAy + szpAz + ﬁm

(Here the “hats” denote the quantum differential operators corresponding to the energy and mo-
mentum.) will satisfy
E? =p.2+p,2 +p.2+m?



if the algebra generated by «,, o, v, 3 has each generator of square one and each distinct pair

of generators anti-commuting. From there we obtain the general Dirac equation by replacing £
by i0/0t, and p, with —i0/0x (and same for y, 2).

(10/0t + i, 0/ 0z + 10,0/ 0y + ia,0/y — fm)p = 0.
This is equivalent to
(0/0t + a,0/0x + a,0/0y + a,0/y + ifm)y = 0.

Thus, here we take
Qg = 77777 Oy = €,0,; = 6777 ﬁ = Zéﬁﬁ,

and observe that these elements satisfy the requirements for the Dirac algebra. Note how we have
a significant interaction between the commuting square root of minus one (z) and the element €7
of square minus one in the split quaternions. This brings us back to our original considerations
about the source of the square root of minus one. Both viewpoints combine in the element
[ = 1€énn that makes this Majorana algebra work. Since the algebra appearing in the Majorana
Dirac operator is constructed entirely from two commuting copies of the split quaternions, there
is no appearance of the complex numbers, and when written out in 2 X 2 matrices we obtain
coupled real differential equations to be solved. Clearly this ending is actually a beginning of a
new study of Majorana Fermions. That will begin in a sequel to the present paper.



Core of our
joint work with
Peter
Rowlands.
Forming a
nilpotent
version of the
Majorana-Dirac
Equation.




Letting 2 = (p e x — E't), we have
Ut = (A+ Bi)e" = (A+ Bi)(Cos(Q) +1iSin(2)) =
ACos(y) — BSin(Q2)) + i(BCos(2) + ASin(£2)).
Thus we have found two real solutions to the Majorana Dirac Equation:
ACos(2) — BSin(2)

and
BCos(2) + ASin(Q)
with
Q= (pex — Et).

Using the Majorana Operators A and B
with AB = -BA and A*2 = BA2 = - m™2.



Thus we now see, via the nilpotent
approach to the Dirac equation, how the
Majorana Operators are directly related to
real solutions to the Majorana-Dirac
Equation.
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The Feynman Checkerboard

= N pi¢P)
Dirac Amplitude
(7,0)
CP) =
number

of corners in
path P

1111111



In the RIl, Majorana Fermion case we have

6¢2/8T — Zpg
oY1 /0l = —

Thus the Checkerboard works with plus/minus cornering.

This model gives a picture of how Majorana’s
equations can look in an explicit case and
show how discrete quantum physics may

avoid complex numbers.



3.1 Spacetime in 1+ 1 dimensions.

Using the method of this section and spacetime with one dimensic
of space (z), we can write a real Majorana Dirac operator in ti
form

0/0t + €0/0x + enm

where, the matrix representation is now two dimensional with
6:(—1 0)’77:(0 1>,€n:(0 —1>.
0 1 1 0 1 0
We obtain a nilpotent operator, D by multiplying by in :
D = ind/0t + ined/0zr — iem.
Letting ¢ = e*P*—E?) e have
Dy = (A+iB)y

where
A=nE+enp

and
B = —em.



and

Note that A2 = E? — p? = m? and B? = m?, from which it is
easy to see that A + iB is nilpotent. A and B are the Majorana
operators for this decomposition. Multiplying out, we find

(A+iB)Y = (A+iB)(cos(0) +isin(0)) =

(Acos(0) — Bsin(0)) + i(Bcos(0) + Asin(0))

where 0 = pr— Et. We now examine the real part of this expression,
as it will be a real solution to the Dirac equation. The real part is

Acos(0) — Bsin(6) = (nE + enp)cos(6) + emsin(6)

_ ( —msin(6)  (E —p)cos(6) )
(E + p)cos(0) msin(6) '

Each column vector is a solution to the original Dirac equation
corresponding to the operator

V = 0/0t+ €d/0x + enm



written as a 2 X 2 matrix differential operator. We can see this in
an elegant way by changing to light-cone coordinates:

1 1

(Recall that we take the speed of light to be equal to 1 in this
discussion.) Then

6 = pxr — Et = —(E — p)r — (E + p)l.

and the Dirac equation

0/t + €0z + enm) ( g; ) —0

becomes the pair of equations
OY1/0l = mibe,
O /Or = —map;.



3¢1/3l = m¢27

Oy /0r = —map;.
Note that these equations are satisfied by

Y1 = —msin(—(E — p)r — (E + p)l),

Yo = (E + p)cos(—(E — p)r — (E + p)l)

exactly when E? = p? + m? as we have assumed. It is quite inter-
esting to see these direct solutions to the Dirac equation emerge in
this 1+1 case. The solutions are fundamental and they are distinct
from the usual solutions that emerge from the Feynman Checker-
booad Model [2, 6]. It is the above equations that form the basis
for the Feynman Checkerboard model that is obtained by examin-
ing paths in a discrete Minkowski plane generating a path integral



In fact, this solution to the
Feynmann Checkerboard model is
different from the solutions from

the path sum, suggesting new
approaches to the original problem
of path integrals for the Dirac
equation.



4 Spacetime Algebra

Another way to put the Dirac equation is to formulate it in terms
of a spacetime algebra. By a spacetime algebra we mean a Clifford
algebra with generators {e1, ez, €3, e4} such that e? = e3 = €% =1,

e3 = —1 and e;e; + eje; = 0 for ¢ # j. Thus the generators of the

algebra fit the Minkowski metric and we can represent a point in
space time by p = xe; +yez +ze3+teq so that p? = z2 1%+ 22 — 2
corresponds to the spacetime metric with the speed of light ¢ = 1.
(The reader may wish to compare this approach with Hestenes

[15].)



In spacetime algebra terms the Dirac operator becomes

O =0/0t+ e10/0x + e30/0y + e30/0z + egm.



This point of view makes it clear how to search for Majorana al-
gebra since we can search for a spacetime algebra of real matrices.
Then the Dirac equation in the form

O’ =0

will be an equation over the real numbers. In fact the algebra that
we have already written for Majorana is a spacetime algebra:

e1 = Nn,e2 = €,€3 = €0, €4 = €NN.

Furthermore, we can see that the following lemma gives us a guide
to constructing nilpotent formulations of the Dirac equation.



Definition 1. Suppose that {e], e}, e}, e} } generates a spacetime

algebra A and that p is an element of A with 2 = —1 and so
that {e; = pel,es = peh,es = pes,eq = pey} is also a spacetime
algebra with e? = e3 = €3 = 1, €5 = —1 and e;e; + eje; = 0 for

i # j. Under these circumstances, we call the spacetime algebra A
nilpotent.

Lemma. Let A be a nilpotent spacetime algebra, with notation
as in Definitionl above. Then the operator

D = pud/ot + e10/0x + e20/0y + €30/0z + esm

generates a nilpotent Dirac equation.

Proof. We wish to show that if 1) = ei(P*(@:%:2)=Et) and Do) = Uy
then U? = 0. Calculating, we find that

U=i(—pE+pe(e1,eze3)) + egm.
It ifollows that
U?=—(—E*+p+p;+p:) —m’ = E* —p5 —p, —ps —m? =0.

This completes the proof. [



I’=J?=#=j2=1and IJ+JI=0and ij+ ji=0.

Theorem. All real Majorana spacetime algebras are nilpotent and,
up to permutations and substitutions, they are of the following

types:
{3,51,5J,15},
{j,i1,1J,1Ji},
{ijIJ,1,J,1Ji}.

This provides a platform for
deeper study of the Majorana
Dirac Equation.



But we should take a WIDER VIEWV.

The universal equation should be about the (state of)
the Universe U.

An operator D acts on U to produce Nothing.
DU=0.

But the universe U is both operator and operand.
So we take D = U and obtain
the Universal Nilpotent Equation.
Uu =0,
of which the Dirac equation is one of the first
special cases.



The Simplest example of the Universal Nilpotent Equation
is given by the operator

Ux = x|

Here the Universe U is that Universe
(self) created by the Mark and taken to
Nothing by the crossing from the marked state to the
unmarked state.

uu= —|| =

Uu = 0.



=

In this formalism the mark is seen
to make a distinction.
The formal language of the
calculus of indications refers to the mark and is
built from the mark.

The language using the mark is inherently self-
referential.
The mark and the observer are seen, in the form,
to be identical.

The Calculus writes itself in terms of
itself.



Physical theory is
seen to write itself in terms of the condition
for observation to occur at all.
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