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Majorana Fermions, Braiding and The Dirac Equation 

(and containing joint work with Peter Rowlands
on a nilpotent Majorana-Dirac Equation)

UIC and NSU



A possible sighting of 
Majorana states
Nearly 80 years ago, the Italian physicist 
Ettore Majorana proposed the existence of 
an unusual type of particle that is its own 
antiparticle, the so-called Majorana 
fermion. The search for a free Majorana 
fermion has so far been unsuccessful, but 
bound Majorana-like collective excitations 
may exist in certain exotic 
superconductors. Nadj-Perge et al. created 
such a topological superconductor by 
depositing iron atoms onto the surface of 
superconducting lead, forming atomic 
chains (see the Perspective by Lee). They 
then used a scanning tunneling microscope 
to observe enhanced conductance at the 
ends of these chains at zero energy, where 
theory predicts Majorana states should 
appear.



Fusion Rules for a Majorana Fermion

P P

P

P P

*

The “particle” P interacts with P
to produce either P or *.

* is neutral.

A Very Elementary Particle -



For a Standard Fermion there is a 
an annihilation operator F 

and a creation operator F*.

These correspond to the fact that
the antiparticle is distinct from the 

particle.

We have FF = F*F* =0 (Pauli Exclusion)
and

FF* + F*F = 1.
Later in the talk we will see 

much more about this relation.



The Creation/Annihilation algebra for a 
Majorana Fermion is very simple. 

Just an element a with aa =1. 
If there are two Majorana Fermions, we have

a,b
with aa = 1, bb=1 and

ab +ba = 0.

A Clifford Algebra.

Algebraic Justification of this 
Statement Follows...

Majorana and Clifford Algebra



An Electron’s creation and annihilation operators are 
combinations of Majorana Fermion operators: 

U = (a + ib)/2   and   U* = (a - ib)/2

where ab+ba = 0 and aa =bb=1.

Majorana Fermions are their own antiparticles.



U = (a + ib)/2   and   U* = (a - ib)/2

4UU = (a+ib)(a+ib) 
= aa -bb +i(ab + ba) 

UU= 0
    U*U* = 0.

UU* +U*U = (U + U*)(U+U*) = aa = 1

This is the creation/annihilation algebra for an 
electron.



This next part is motivated by G. Spencer-Brown’s 
invention of a ‘logical particle’ that interacts with 
itself to either confirm itself or to cancel itself.

This interaction, combined with recursion, leads both 
to matrix algebra and the very elementary mathematics

of a Majorana Fermion.

Iconics



The Mark is a logical particle 
(Laws of Form by G. Spencer-Brown)

that interacts with itself either to annihilate itself, or to 
produce itself.

== *

The Mark is a “logical particle” for a level of logic 
deeper than Boolean Logic.



In this formalism the mark is seen
to make a distinction in the plane.

The formal language of the
calculus of indications refers to the mark and is 

built from the mark.

The language using the mark is inherently self-
referential. 

The Calculus writes itself in terms of 
itself.



The first distinction, the mark, and the observer are not 
only interchangeable, but, in the form, identical.



Formally, we can distinguish 
the two interactions via 

adjacency and concentricity.

*

PP = * + P





Flattening String Iconics



 �  �   

state and a blank space for the unmarked state. Then one has two modes of
interaction of a box with itself:

1. Adjacency:

and

2. Nesting: .

With this convention we take the adjacency interaction to yield a single box,
and the nesting interaction to produce nothing:

=

=

We take the notational opportunity to denote nothing by an asterisk (*). The
syntatical rules for operating the asterisk are Thus the asterisk is a stand-in
for no mark at all and it can be erased or placed wherever it is convenient to
do so. Thus

= �.

We shall make a recoupling theory based on this particle, but it is worth
noting some of its purely combinatorial properties first. The arithmetic of
combining boxes (standing for acts of distinction) according to these rules
has been studied and formalized in [52] and correlated with Boolean algebra
and classical logic. Here within and next to are ways to refer to the two
sides delineated by the given distinction. From this point of view, there are
two modes of relationship (adjacency and nesting) that arise at once in the
presence of a distinction.

*

P P P P

P

Figure 25 - Fibonacci Particle Interaction
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=

Forbidden

Figure 29 - Fibonacci Particle as 2-Projector

Note that in Figure 29 we have adopted a single strand notation for the particle
interactions, with a solid strand corresponding to the marked particle, a dotted
strand (or nothing) corresponding to the unmarked particle. A dark vertex
indicates either an interaction point, or it may be used to indicate the the
single strand is shorthand for two ordinary strands. Remember that these are
all shorthand expressions for underlying bracket polynomial calculations.

In Figures 30, 31, 32, 33, 34 and 35 we have provided complete diagram-
matic calculations of all of the relevant small nets and evaluations that are
useful in the two-strand theory that is being used here. The reader may wish
to skip directly to Figure 36a and Figure 36b where we determine the form of
the recoupling coe�cients for this theory. We will discuss the resulting algebra
below.
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�  �     

properties (the operator is idempotent and a self-attached strand yields a zero
evaluation) and give diagrammatic proofs of these properties.

=

= = = 0

= 0

= =

=

� 1/⇥

�(1/⇥)⇥� 1/⇥

� 1/⇥

Figure 28 - The 2-Projector

In Figure 29, we show the essence of the Temperley-Lieb recoupling model
for the Fibonacci particle. The Fibonaccie particle is, in this mathematical
model, identified with the 2-projector itself. As the reader can see from Figure
29, there are two basic interactions of the 2-projector with itself, one giving
a 2-projector, the other giving nothing. This is the pattern of self-iteraction
of the Fibonacci particle. There is a third possibility, depicted in Figure 29,
where two 2-projectors interact to produce a 4-projector. We could remark at
the outset, that the 4-projector will be zero if we choose the bracket polynomial
variable A = e3�/5. Rather than start there, we will assume that the 4-projector
is forbidden and deduce (below) that the theory has to be at this root of unity.
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Fibonacci 
Model

Temperley Lieb 
Representation of 
Fibonacci Model

 �  � � �    

For this specialization we see that the matrix F becomes

F =

�
1/⇤ ⇤/�

�/⇤2 T⇤/�2

⇥

=

�
1/⇤ ⇤/�

�/⇤2 (��2/⇤2)⇤/�2

⇥

=

�
1/⇤ ⇤/�

�/⇤2 �1/⇤

⇥

This version of F has square equal to the identity independent of the value of
�, so long as ⇤2 = ⇤ + 1.

The Final Adjustment. Our last version of F su⇥ers from a lack of symme-
try. It is not a symmetric matrix, and hence not unitary. A final adjustment
of the model gives this desired symmetry. Consider the result of replacing each
trivalent vertex (with three 2-projector strands) by a multiple by a given quan-
tity ⇥. Since the � has two vertices, it will be multiplied by ⇥2. Similarly, the
tetradhedron T will be multiplied by ⇥4. The ⇤ and the � will be unchanged.
Other properties of the model will remain unchanged. The new recoupling
matrix, after such an adjustment is made, becomes

�
1/⇤ ⇤/⇥2�

⇥2�/⇤2 �1/⇤

⇥

For symmetry we require

⇤/(⇥2�) = ⇥2�/⇤2.

We take
⇥2 =

⇥
⇤3/�.

With this choice of ⇥ we have

⇤/(⇥2�) = ⇤�/(�
⇥

⇤3) = 1/
⇥

⇤.

Hence the new symmetric F is given by the equation

F =

�
1/⇤ 1/

⇥
⇤

1/
⇥

⇤ �1/⇤

⇥

=

�
⇤

⇥
⇤⇥

⇤ �⇤

⇥

where ⇤ is the golden ratio and ⇤ = 1/⇤. This gives the Fibonacci model.
Using Figures 37 and 38, we have that the local braiding matrix for the model
is given by the formula below with A = e3�i/5.

R =

�
�A4 0

0 A8

⇥

=

�
e4�i/5 0

0 �e2�i/5

⇥

.

The simplest example of a braid group representation arising from this
theory is the representation of the three strand braid group generated by S1 =
R and S2 = FRF (Remember that F = F T = F�1.). The matrices S1 and S2

are both unitary, and they generate a dense subset of the unitary group U(2),
supplying the first part of the transformations needed for quantum computing.
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Notice that it follows from the symmetry of the diagrammatic recoupling for-
mulas of Figure 36 that the square of the recoupling matrix F is equal to the
identity. That is,

�
1 0
0 1

⇥

= F 2 =

�
1/⇥ ⇥/�

�/⇥2 T⇥/�2

⇥ �
1/⇥ ⇥/�

�/⇥2 T⇥/�2

⇥

=

�
1/⇥2 + 1/⇥ 1/� + T⇥2/�3

�/⇥3 + T/(⇥�) 1/⇥ + ⇥2T 2/�4

⇥

.

Thus we need the relation

1/⇥ + 1/⇥2 = 1.

This is equivalent to saying that

⇥2 = 1 + ⇥,

a quadratic equation whose solutions are

⇥ = (1±
⇥

5)/2.

Furthermore, we know that
⇥ = �2 � 1

from Figure 33. Hence
⇥2 = ⇥ + 1 = �2.

We shall now specialize to the case where

⇥ = � = (1 +
⇥

5)/2,

leaving the other cases for the exploration of the reader. We then take

A = e3�i/5

so that
� = �A2 � A�2 = �2cos(6⇥/5) = (1 +

⇥
5)/2.

Note that � � 1/� = 1. Thus

� = (� � 1/�)2� �⇥/� = � � 1.

and
T = (� � 1/�)2(�2 � 2)� 2�/� = (�2 � 2)� 2(� � 1)/�

= (� � 1)(� � 2)/� = 3� � 5.

Note that
T = ��2/⇥2,

from which it follows immediately that

F 2 = I.

This proves that we can satisfy this model when ⇥ = � = (1 +
⇥

5)/2.
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Braid Representations 
Dense in Unitary 

Groups



P^2 = * + P
P^3 = P* + PP = P + * + P = * + 2P 
P^4 = P + 2* + 2P = 2* + 3P

 P^5 = 3* + 5P
 P^6 = 5* + 3P
 P^7 = 8* + 5P
 

The Majorana P is a Fibonacci Particle



P

P             *

P        *

*

P

P       * P      *P

P* = P

PP = P + *

PPP= 2P + *

PPPP = 3P + 2*

Fibonacci Processes 
from

Self-Interaction of P.



Note that we have shown how the formalism of the 
mark, as logical particle is coherent with its interpretation 

as a Majorana Fermion.

= *=





















Fermion Algebra Directly From Re-entering Mark



... +1, -1, +1, -1, +1, -1, +1, -1, ...

[-1,+1] [+1,-1]

Figure 29:

The square root of minus one is a perfect example of an eigenform that occurs in a new and wider

domain than the original context in which its recursive process arose. The process has no fixed

point in the original domain.

Looking at the oscillation between +1 and −1, we see that there are naturally two phase-
shifted viewpoints. We denote these two views of the oscillation by [+1,−1] and[−1,+1]. These
viewpoints correspond to whether one regards the oscillation at time zero as starting with +1 or
with −1. See Figure 29. We shall let the word iterant stand for an undisclosed alternation or
ambiguity between +1 and −1. There are two iterant views: [+1,−1] and [−1,+1] for the basic
process we are examining. Given an iterant [a, b], we can think of [b, a] as the same process with
a shift of one time step. The two iterant views, [+1,−1] and [−1,+1], will become the square
roots of negative unity, i and −i.

We introduce a temporal shift operator η such that

[a, b]η = η[b, a]

and

ηη = 1

for any iterant [a, b], so that concatenated observations can include a time step of one-half period
of the process

· · · abababab · · · .

We combine iterant views term-by-term as in

[a, b][c, d] = [ac, bd].

We now define i by the equation

i = [1,−1]η.

This makes i both a value and an operator that takes into account a step in time.

We calculate

ii = [1,−1]η[1,−1]η = [1,−1][−1, 1]ηη = [−1,−1] = −1.
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and

ηη = 1

for any iterant [a, b], so that concatenated observations can include a time step of one-half period
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· · ·abababab · · · .
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This makes i both a value and an operator that takes into account a step in time.

We calculate

ii = [1,−1]η[1,−1]η = [1,−1][−1, 1]ηη = [−1,−1] = −1.

Thus we have constructed a square root of minus one by using an iterant viewpoint. In this view

i represents a discrete oscillating temporal process and it is an eigenform for T (x) = −1/x,
participating in the algebraic structure of the complex numbers. In fact the corresponding algebra

structure of linear combinations [a, b]+[c, d]η is isomorphic with 2×2matrix algebra and iterants
can be used to construct n × n matrix algebra. We treat this generalization elsewhere [72, 73].

Now we can make contact with the algebra of the Majorana fermions. Let e = [1,−1]. Then
we have e2 = [1, 1] = 1 and eη = [1,−1]η = [−1, 1]η = −eη. Thus we have

e2 = 1,

η2 = 1,

and

eη = −ηe.

We can regard e and η as a fundamental pair of Majorana fermions. This is a formal corre-
spondence, but it is striking how this Marjorana fermion algebra emerges from an analysis of

the recursive nature of the reentering mark, while the fusion algebra for the Majorana fermion

emerges from the distinctive properties of the mark itself. We see how the seeds of the fermion

algebra live in this extended logical context.

Note how the development of the algebra works at this point. We have that

(eη)2 = −1

and so regard this as a natural construction of the square root of minus one in terms of the phase

synchronization of the clock that is the iteration of the reentering mark. Once we have the square
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At this point we see that it is not just the 
square root of minus one that has emerged from

the structure of the oscillation, but the simple 
non-commutative algebra of the split quaternions.

In fact, we have uncovered matrix algebra.

But note that we have shown that the Fermion 
algebra is primordial, related just to the oscillation 
of a distinction. The Clifford algebra occurs at the 

Arithmetic level with its extended polarity of 
-1, 0 , +1.

Note also that -0 = 0 so that at the arithmetic level, 
0 becomes re-entrant.



SpaceTime

-

s

-

s
ss = 1
ii = -1





At this stage we have shown how the Clifford 
algebra generated by e and eta (the split 

quaternions) emerges naturally from the discrete 
dynamics of the square root of minus one.

Dynamics of the reentering 
mark. 

The mark embodies the fusion algebra for a 
Majorana Fermion. It can interact with itself to 

either produce itself or annihilate itself.



A row of n electrons can be regarded as a row of 2n 
Majorana Fermions.

Recent work suggests that Majorana Fermions 
can be detected in nanowires.  
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Unpaired Majorana fermions in quantum wires
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Abstract

Certain one-dimensional Fermi systems have an energy gap in the
bulk spectrum while boundary states are described by one Majorana
operator per boundary point. A finite system of length L possesses two
ground states with an energy difference proportional to exp(−L/l0)
and different fermionic parities. Such systems can be used as qubits
since they are intrinsically immune to decoherence. The property of a
system to have boundary Majorana fermions is expressed as a condi-
tion on the bulk electron spectrum. The condition is satisfied in the
presence of an arbitrary small energy gap induced by proximity of a
3-dimensional p-wave superconductor, provided that the normal spec-
trum has an odd number of Fermi points in each half of the Brillouin
zone (each spin component counts separately).

Introduction

Implementing a full scale quantum computer is a major challenge to mod-
ern physics and engineering. Theoretically, this goal should be achievable

∗On leave from L. D. Landau Institute for Theoretical Physics

1

In terms of this operators, the Hamiltonian becomes

H1 =
i

2

∑

j

(

−µc2j−1c2j + (w + |∆|)c2jc2j+1 + (−w + |∆|)c2j−1c2j+2

)

. (6)

Let us start with two special cases.

a) The trivial case: |∆| = w = 0, µ < 0. Then H1 = −µ
∑

j(a
†
jaj −

1
2) =

i
2(−µ)

∑

j c2j−1c2j . The Majorana operators c2j−1, c2j from the same
site j are paired together to form a ground state with the occupation
number 0.

b) |∆| = w > 0, µ = 0. In this case

H1 = iw
∑

j

c2jc2j+1. (7)

Now the Majorana operators c2j , c2j+1 from different sites are paired
together (see fig. 2). One can define new annihilation and creation
operators ãj = 1

2(c2j + ic2j+1), ã†
j = 1

2(c2j − ic2j+1) which span the sites

j and j + 1. The Hamiltonian becomes 2w
∑L−1

j=1 (ã†
jãj −

1
2). Ground

states satisfy the condition ãj |ψ⟩ = 0 for j = 1, . . . , L − 1. There are
two orthogonal states |ψ0⟩ and |ψ1⟩ with this property. Indeed, the
Majorana operators b′ = c1 and b′′ = c2L remain unpaired (i. e. do not
enter the Hamiltonian), so we can write

− ib′b′′|ψ0⟩ = |ψ0⟩, −ib′b′′|ψ1⟩ = −|ψ1⟩. (8)

✎
✍

☞
✌

% %
c1 c2 ✎

✍
☞
✌

% %
c3 c4

. . .
✎
✍

☞
✌

% %
c2L−1 c2L

a)

✎
✍

☞
✌

% %
c1 c2 ✎

✍
☞
✌

% %
c3 c4

. . .
✎
✍

☞
✌

% %
c2L−1 c2L

b)

Figure 2: Two types of pairing.

Note that the state |ψ0⟩ has an even fermionic parity (i. e. it is a superposition
of states with even number of electrons) while |ψ1⟩ has an odd parity. The
parity is measured by the operator

P =
∏

j

(−ic2j−1c2j). (9)

5
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Non-abelian statistics of half-quantum vortices in p-wave superconductors

D. A. Ivanov
Institut für Theoretische Physik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland

(May 11, 2000)

Excitation spectrum of a half-quantum vortex in a p-wave superconductor contains a zero-energy
Majorana fermion. This results in a degeneracy of the ground state of the system of several vortices.
From the properties of the solutions to Bogoliubov-de-Gennes equations in the vortex core we derive
the non-abelian statistics of vortices identical to that for the Moore-Read (Pfaffian) quantum Hall
state.

Certain types of superconductors with triplet pairing allow half-quantum vortices [1]. Such vortices appear if the
multi-component order parameter has extra degrees of freedom besides the overall phase, and the vortex involves
both a rotation of the phase by π and a rotation of the “direction” of the order parameter by π, so that the order
parameter maps to itself on going around the vortex. The magnetic flux through such a vortex is one half of the
superconducting flux quantum Φ0.

Another signature of this unusual flux quantization is a Majorana fermion level at zero energy inside the vortex
core [2]. This energy level has a topological nature [3] and from the continuity considerations must be stable to any
local perturbations. In terms of the energy levels, the Majorana fermions in vortex cores imply a 2n-fold degeneracy
of the ground state of a system with 2n isolated vortices. If we let vortices adiabatically move around each other,
this motion may result in a unitary transformation in the space of ground states (non-abelian statistics). We shall
see that it is indeed the case.

The non-abelian statistics for half-quantum vortices has been originally derived for the Pfaffian quantum Hall
state proposed by Moore and Read [4]. The Pfaffian state is of Laughlin type and may be possibly realized for
filling fractions with even denominator. The excitations in the Pfaffian state are half-quantum vortices, and their
non-abelian statistics has been derived in the field-theoretical framework [5–8].

On the other hand, recently Read and Green suggested that the Pfaffian state belongs to the same topological class
as the BCS pairing state and thus the latter must have the same non-abelian statistics [2]. In our paper we verify
this directly in the BCS framework as the property of solutions to Bogoliubov-de-Gennes equations. Our derivation
provides an alternative (and possibly more transparent) point of view on the non-abelian statistics of half-quantum
vortices as well as an additional verification of topological equivalence between Pfaffian and BCS states.

Let us begin our discussion with reviewing the properties of a half-quantum vortex. To be specific, we consider
a chiral two-dimensional superconductor with the order parameter of A phase of 3He. The order parameter is
characterized by the direction d̂ of the spin triplet (the projection on which of the spin of the Cooper pair is zero)
and by the overall phase ϕ. The wave function of the condensate is

Ψ± = eiϕ

[

dx

(

|↑↑⟩ + |↓↓⟩
)

+ idy

(

|↑↑⟩ − |↓↓⟩
)

+ dz

(

|↑↓⟩ + |↓↑⟩
)

]

(kx ± iky). (1)

The ± signs denote the two possible chiralities of the condensate. The chirality breaks the time-reversal symmetry
and means a non-zero angular momentum of the Cooper pairs. In a physical chiral superconductor there must exist
domain walls separating domains of opposite chirality. Experimentally, domain walls may possibly be expelled from
the sample by an external field which makes one of the chiralities energetically favorable. In our discussion we do not
consider interaction of vortices with domain walls, but assume that the chirality is fixed over the region where the
vortex braiding occurs (and takes positive sign in eq.(1)).

For the half-quantum vortex to exist, the vector d̂ must be able to rotate (either in a plane or in all three dimensions).
An important observation is that the order parameter maps to itself under simultaneous change of sign of the vector
d̂ and shift of the phase ϕ by π: (ϕ, d̂) %→ (ϕ + π,−d̂). The half-quantum vortex then combines rotations of the
vector d̂ by π and of the phase ϕ by π on going around the vortex core (Fig. 1). This vortex is topologically stable,
i.e. it cannot be removed by a continuous (homotopic) deformation of the order parameter.

Without loss of generality, we consider the vector d̂ rotating in the x-y plane. The direction of the rotation of the
phase ϕ may either coincide or be opposite to the chirality of the condensate, which defines either a positive (Φ = 1/2)
or a negative (Φ = −1/2) vortex respectively.

There are also two possible directions of rotating the vector d̂. If the vector d̂ is confined to a plane (i.e. takes
values on a one-dimensional circle) by an anisotropy interaction, this gives two possible winding numbers of the vector

1

Ti :

⎧

⎨

⎩

ci !→ ci+1

ci+1 !→ −ci

cj !→ cj for j ̸= i and j ̸= i + 1
(8)

This defines the action of Ti on Majorana fermions. One easily checks that this action obeys the commutation relations
(7).

i

j

i

j

FIG. 3. Elementary braid interchange of two vortices.

Now the action of operators Ti may be extended from operators to the Hilbert space. Since the whole Hilbert space
can be constructed from the vacuum state by fermionic creation operators, and the mapping of the vacuum state by
Ti may be determined uniquely up to a phase factor, the action (8) of B2n on operators uniquely defines a projective
representation of B2n in the space of ground states.

The explicit formulas for this representation may be written in terms of fermionic operators. Namely, we need
to construct operators τ(Ti) obeying τ(Ti)cj [τ(Ti)]−1 = Ti(cj), where Ti(cj) is defined by (8). If we normalize the
Majorana fermions by

{ci, cj} = 2δij, (9)

then the expression for τ(Ti) is

τ(Ti) = exp
(π

4
ci+1ci

)

=
1√
2

(1 + ci+1ci) (10)

(up to a phase factor).
This formula presents the main result of our calculation. On inspection, this representation coincides with that

described by Nayak and Wilczek for the statistics of the Pfaffian state [5] (our Majorana fermions correspond to the
operators γi in section 9 of their paper).

The two simplest examples of the representation (10) are the cases of two and four vortices. These examples were
previously discussed to some extent in the Pfaffian framework in refs. [5,6], and we review them here for illustration
purposes.

In the case of two vortices, the two Majorana fermions may be combined into a single complex fermion as Ψ =
(c1 + ic2)/2, Ψ† = (c1 − ic2)/2. The ground state is doubly degenerate, and the only generator of the braid group T
is represented by

τ(T ) = exp
(π

4
c2c1

)

= exp
[

i
π

4
(2Ψ†Ψ− 1)

]

= exp
(

i
π

4
σz

)

, (11)

where σz is a Pauli matrix in the basis (|0⟩, Ψ† |0⟩).
In the case of four vortices, the four Majorana fermions combine into two complex fermions Ψ1 and Ψ2 by Ψ1 =

(c1 + ic2)/2, Ψ2 = (c3 + ic4)/2 (and similarly for Ψ†
1 and Ψ†

2). The ground state has degeneracy four, and the three
generators T1, T2, and T3 of the braid group are represented by

τ(T1) = exp
(

i
π

4
σ(1)

z

)

=

⎛

⎜

⎝

e−iπ/4

eiπ/4

e−iπ/4

eiπ/4

⎞

⎟

⎠
,

τ(T3) = exp
(

i
π

4
σ(2)

z

)

=

⎛

⎜

⎝

e−iπ/4

e−iπ/4

eiπ/4

eiπ/4

⎞

⎟

⎠
, (12)

τ(T2) = exp
(π

4
c3c2

)

=
1√
2
(1 + c3c2) =

1√
2

[

1 + i(Ψ†
2 + Ψ2)(Ψ

†
1 −Ψ1)

]

=
1√
2

⎛

⎜

⎝

1 0 0 −i
0 1 −i 0
0 −i 1 0
−i 0 0 1

⎞

⎟

⎠
,
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FIG. 1: Josephson junction with a nanowire on top. Red spots
(color online) represent Majorana fermions. Double arrows
represent the overlap between the Majorana fermions.

where EJ is the Josephson energy of the junction, ϕ is the
gauge invariant phase difference and the operators ηi are
Hermitian ηi = η†i and they fulfill the anticommutator
relation ηiηj + ηjηi = 2δi,j. Due to the presence of MF
the periodicity of the spectrum is 4π. In finite systems,
in-phase MF may recombine into usual fermions through
the overlap of their wave functions [1, 36]. In order to
account with this phenomenon an extra term should be
added, so that the total Hamiltonian becomes

H = iEJ cos (ϕ/2) η1η2 + iδ (η4η2 + η1η3) , (2)

where we have introduced a parameter δ to account for
overlap between the in-phase MF which decreases expo-
nentially with increasing distance between the Majorana
modes (see Fig. 1). Considering that the in-phase MFs
are far away compared with those on the junction we will
use δ ≪ EJ . Diagonalizing the Hamiltonian yields the
2π-periodic energy spectrum (see Fig. 2(a))

E(ϕ) = ±
√

4δ2 + E2
J cos2(ϕ/2). (3)

Non-adiabatic changes of the phase leads to transitions
between the two eigenstates. Since EJ ≫ δ, the transi-
tion probability is non-vanishing only at the anticrossings
of the eigenspectrum, that is, for ϕ = (2n+1)π, where n
is an integer (see red areas in Fig. 2(a)). Thus, as long as
non-adiabatic transitions occur, the overlap between MF
is effectively canceled. As a consequence, the 4π period-
icity in the eigenspectrum, and also in the supercurrent
(I ∝ ∂ϕE±), is recovered. As we will see below the new
shape of the current does lead to the expected even steps
and also to additional contributions of the order of δ at
odd and fractional multiples of the ac frequency [38].
In order to calculate the transition probability we con-

sider the semiclassical approximation, and we make use
of the fact that the velocity at the anticrossings is linear,
therefore, transitions between states can be obtained by
means of the Landau-Zener probability

PLZ = exp

(

−2π
4δ2

EJ!ϕ̇

)

. (4)

It is important to remark that in the experiment we are
analyzing, the phase ϕ is biased by a noisy voltage coming
from fixing an external current. These voltage fluctua-
tions are translated to phase fluctuations by the fact that
ϕ̇ ∝ V , and thus, dephasing enters into play. We have es-
timated that the dephasing time tD is much shorter than
the time needed to change the phase by ϕ → ϕ + 2π.
Therefore, we assume that interference effects can be
neglected, and Landau-Zener transitions (LZT) can be
considered individually. Coherences between LZTs have
been recently analyzed phenomenologically [35], and in
more detail [34] for the case of a voltage biased junction,
where also additional Andreev levels, QP and inelastic
transitions have been considered. However, we would
like to stress that the current biased setup analyzed in
this letter for the first time has two advantages: contrary
to the voltage biased case, it (1) shows a robust signal
of small odd integer Shapiro steps even if the case of a
multimode wire and (2) the observation is not masked by
interference effects as those are absent in our case.
Once we have analyzed the dynamical transitions of the

junction, we are ready to include their dynamical effects
on the current. To this aim we introduce the function
IM (ϕ) in the supercurrent

I(ϕ) = IM (ϕ)
2

EJ

∂

∂ϕ
E(ϕ). (5)

The function, IM (ϕ), can take the constant values ±IM ,
where IM is the maximum value of the supercurrent,
which is of the order of nA. During the adiabatic pe-
riod, the function IM (ϕ) remains constant and whenever
there is a LZT, IM (ϕ) changes its sign. To understand
the change of the sign we can compare in Fig. 2(b) the
adiabatic and non-adiabatic passage through the anti-
crossings (solid and dashed respectively). After each an-
ticrossing the curve coming from a LZT acquires a neg-
ative sign respect to the adiabatic passage. Thus, we
describe the dynamical effects on the current produced
by the LZT by changing the sign of IM .
We study the Shapiro experiment by means of the re-

sistive shunted junction model (RSJ) in the overdamped
limit [31, 39]. The induced voltage on the junction can
be calculated by solving the differential equation

I0 + I1 sin(ωact) = I(ϕ(t)) +
!

2eR
ϕ̇(t). (6)

This equation is obtained from Kirchoff’s law where an
external DC I0 and AC I1 sin(ωact) currents are applied
to the junction. The outgoing current is modeled by
a parallel circuit whose components are, I(ϕ(t)), given
by Eq. (5), and a resistive current (!/2eR)ϕ̇ originating
from the existence of quasiparticles. The solution of the
differential equation (6), allows to obtain the induced
voltage V = !ϕ̇/2e. This equation is solved dynamically
since IM (ϕ) changes its sign depending on whether the
LZT occurs or not. In order to include such a dynamical
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On the Dynamical detection of Majorana fermions in current-biased nanowires

Fernando Domı́nguez,1 Fabian Hassler,2 and Gloria Platero1

1Instituto de Ciencia de Materiales, CSIC, Cantoblanco, E-28049 Madrid, Spain
2Institute for Quantum Information, RWTH Aachen University, 52056 Aachen, Germany

(Dated: October 29, 2012)

We analyze the current-biased Shapiro experiment in a Josephson junction formed by two one-
dimensional nanowires featuring Majorana fermions. Ideally, these junctions are predicted to have
an unconventional 4π-periodic Josephson effect and thus only Shapiro steps at even multiples of the
driving frequency. Taking additionally into account overlap between the Majorana fermions, due to
the finite length of the wire, renders the Josephson junction conventional for any dc-experiments.
We show that probing the current-phase relation in a current biased setup dynamically decouples
the Majorana fermions. We find that besides the even integer Shapiro steps there are additional
steps at odd and fractional values. However, different from the voltage biased case, the even steps
dominate for a wide range of parameters even in the case of multiple modes thus giving a clear
experimental signature of the presence of Majorana fermions.

PACS numbers: 73.23.-b, 05.60.Gg

Majorana Fermions (MFs) have recently been pre-
dicted to occur in a multitude of different condensed-
matter systems [1–5, 5, 6, 8]. The interest in MFs stems
from the non-Abelian quantum statistics which forms the
basis of topological quantum computation [2, 4, 9, 10].
Majorana fermions naturally occur in half-vortices of chi-
ral p-wave superconductors. Although this type of su-
perconductivity has not been found, it was realized re-
cently that s-wave superconductor together with strong
spin-orbit and an applied magnetic field may emulate a p-
wave superconductor [5, 5, 6, 11]. During the last months
three different experiments [12–14] appeared in the liter-
ature which may provide the first experimental evidence
of MFs.

Signatures of Majorana Fermions appear in the electri-
cal [15–17] and thermal conductance [18, 19], shot-noise
[19], Andreev-reflection [16, 20] and the non-local tun-
neling [16, 21–23]. In this Letter we will focus on the
measurement of the fractional Josephson effect, given
when we put together two superconductors featuring
MFs [1, 4–6, 26–30]. Physically, this effect is produced
by the fact that in the presence of a Majorana bound
mode, the supercurrent carries single electrons instead
of the usual Cooper pairs. Thus, this fractional Cooper
pairs affect the supercurrent by turning it from sin(ϕ) to
sin(ϕ/2).

In Josephson junctions, Shapiro step experiments allow
for the deduction of the periodicity of the current-phase
relation of the junction [31, 32]. Very recently, Shapiro-
steps have been analyzed for voltage-biased Majorana
wires [33–35]. However, the more experimentally real-
istic current-biased experiment [31] remains unexplored.

In one-dimensional (1D) Majorana wire, MFs will ap-
pear at the end points [1]. In an ideal situation, the
ends are infinitely apart from each other avoiding their
recombination. In turn, when the wire is finite, the over-
lap, although very small, is different from zero, thus MF

pair recombines and the special properties that the MF
confer to the system are lost immediately [36]. Physi-
cally, one can circumvent this problem using a Joseph-
son junction where the gauge invariant phase is tuned
non-adiabatically. In this way, transitions between the
recombined fermions induce a dynamical decoupling into
Majorana fermions.

In this work we analyze theoretically the current biased
Shapiro experiment [32] in a finite 1D Josephson junction
where the MFs are recombined (see Fig. 1). In the pre-
sented setup, the current bias the gauge invariant phase,
inducing dynamical decoupling of the MFs. Meanwhile,
it induces a voltage difference that can be measured, pre-
senting the pattern of the periodicity of the junction. We
have calculated the induced voltage by means of the Re-
sistively Shunted Junction (RSJ) model [31]. In addition,
we include extra Andreev modes carrying a 2π periodic
current and quasiparticle poisoning (QP).

In contrast to the infinite length case, where only even
Shapiro steps appear, the obtained results show small
contribution steps at odd and fractional multiples of the
ac frequency, coming from the new features of the dynam-
ical current (see Fig. 2(b) below). Nevertheless, all these
contributions are of the order of the overlap between in-
phase MFs and negligible compared to the height of the
even Shapiro steps. Remarkably, we have found a regime
where the effect of considering a dominant contribution
of extra 2π periodic Andreev modes, does not modify
the spectrum of even Shapiro steps, providing a robust
measurement of the 4π periodicity. In addition, we have
seen that typical time scales (µs) [37] of QP produce a
negligible effect on the dynamics of the system.

Ideally, a generic 1D Josephson junction in the pres-
ence of Majorana fermions can be described by the MFs
placed at the junction, yielding a Hamiltonian

H0 = iEJ cos (ϕ/2) η1η2, (1)
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Figure 30: The Yang-Baxter equation

A solution to the Yang-Baxter equation, as described in the last paragraph is a matrix R,
regarded as a mapping of a two-fold tensor product of a vector space V ⊗V to itself that satisfies

the equation

(R ⊗ I)(I ⊗ R)(R ⊗ I) = (I ⊗ R)(R ⊗ I)(I ⊗ R).

From the point of view of topology, the matrix R is regarded as representing an elementary bit

of braiding represented by one string crossing over another. In Figure 30 we have illustrated

the braiding identity that corresponds to the Yang-Baxter equation. Each braiding picture with

its three input lines (below) and output lines (above) corresponds to a mapping of the three fold

tensor product of the vector space V to itself, as required by the algebraic equation quoted above.

The pattern of placement of the crossings in the diagram corresponds to the factors R ⊗ I and
I ⊗ R. This crucial topological move has an algebraic expression in terms of such a matrix R.
Our approach in this section to relate topology, quantum computing, and quantum entanglement

is through the use of the Yang-Baxter equation. In order to accomplish this aim, we need to study

solutions of the Yang-Baxter equation that are unitary. Then the R matrix can be seen either as a

braiding matrix or as a quantum gate in a quantum computer.

The problem of finding solutions to the Yang-Baxter equation that are unitary turns out to be

surprisingly difficult. Dye [18] has classified all such matrices of size 4 × 4. A rough summary
of her classification is that all 4 × 4 unitary solutions to the Yang-Baxter equation are similar to
one of the following types of matrix:

R =

⎛

⎜

⎜

⎜

⎜

⎝

1/
√

2 0 0 1/
√

2
0 1/

√
2 −1/

√
2 0

0 1/
√

2 1/
√

2 0
−1/

√
2 0 0 1/

√
2

⎞

⎟

⎟

⎟

⎟

⎠

R′ =

⎛

⎜

⎜

⎜

⎝

a 0 0 0
0 0 b 0
0 c 0 0
0 0 0 d

⎞

⎟

⎟

⎟

⎠
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Let a1, a2, a3, ..., a2n be Majorana Fermions.

S(i) = (1 + a(i+1)a(i))/Sqrt(2)

Operators T(i) act on the space of MF’s
via T(i)x = S(i) x S^(i). 

S^(i) = (1 - a(i+1)a(i))/Sqrt(2)

T(i)a(i) = a(i+1)
T(i)a(i+1) = - a(i).

The operators S(i) form a unitary representation of the 
Artin Braid Group:  

S(i)S(i+1)S(i) = S(i+1)S(i)S(i+1)
S(i)S(j) = S(j)S(i) when |i=j|>2.

Ivanov’s Braiding Operators







It is worth noting that a triple of Majorana fermions say a, b, c gives rise to a representation
of the quaternion group. This is a generalization of the well-known association of Pauli matrices

and quaternions. We have a2 = b2 = c2 = 1 and they anticommute. Let I = ba, J = cb, K = ac.
Then

I2 = J2 = K2 = IJK = −1,

giving the quaternions. The operators

A = (1/
√

2)(1 + I)

B = (1/
√

2)(1 + J)

C = (1/
√

2)(1 + K)

braid one another:

ABA = BAB, BCB = CBC, ACA = CAC.

This is a special case of the braid group representation described above for an arbitrary list of

Majorana fermions. These braiding operators are entangling and so can be used for universal

quantum computation, but they give only partial topological quantum computation due to the

interaction with single qubit operators not generated by them.

In Section 5 we show how the dynamics of the reentering mark leads to two (algebraic)

Majorana fermions e and η that correspond to the spatial and temporal aspects of this recursive
process. The corresponding standard fermion operators are then given by the formulas below.

ψ = (e + iη)/2

and

ψ† = (e − iη)/2.

This gives a model of a fermion creation operator as a point in a non-commutative spacetime. This

suggestive point of view, based on knot logic and Laws of Form, will be explored in subsequent

publications.

Topological quantum computing. This paper describes relationships between quantum topol-

ogy and quantum computing as a modified version of Chapter 14 of the book [13] and an ex-

panded version of [67] and an expanded version of a chapter in [81]. Quantum topology is,

roughly speaking, that part of low-dimensional topology that interacts with statistical and quan-

tum physics. Many invariants of knots, links and three dimensional manifolds have been born of

this interaction, and the form of the invariants is closely related to the form of the computation of

amplitudes in quantum mechanics. Consequently, it is fruitful to move back and forth between

quantum topological methods and the techniques of quantum information theory.
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of braiding represented by one string crossing over another. In Figure 30 we have illustrated

the braiding identity that corresponds to the Yang-Baxter equation. Each braiding picture with

its three input lines (below) and output lines (above) corresponds to a mapping of the three fold

tensor product of the vector space V to itself, as required by the algebraic equation quoted above.

The pattern of placement of the crossings in the diagram corresponds to the factors R ⊗ I and
I ⊗ R. This crucial topological move has an algebraic expression in terms of such a matrix R.
Our approach in this section to relate topology, quantum computing, and quantum entanglement

is through the use of the Yang-Baxter equation. In order to accomplish this aim, we need to study

solutions of the Yang-Baxter equation that are unitary. Then the R matrix can be seen either as a

braiding matrix or as a quantum gate in a quantum computer.

The problem of finding solutions to the Yang-Baxter equation that are unitary turns out to be

surprisingly difficult. Dye [18] has classified all such matrices of size 4 × 4. A rough summary
of her classification is that all 4 × 4 unitary solutions to the Yang-Baxter equation are similar to
one of the following types of matrix:
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8 Clifford Algebra, Majorana Fermions and Braiding

Recall fermion algebra. One has fermion annihiliation operators ψ and their conjugate creation
operators ψ†. One has ψ2 = 0 = (ψ†)2. There is a fundamental commutation relation

ψψ† + ψ†ψ = 1.

If you have more than one of them say ψ and φ, then they anti-commute:

ψφ = −φψ.

The Majorana fermions c that satisfy c† = c so that they are their own anti-particles. There is a lot
of interest in these as quasi-particles and they are related to braiding and to topological quantum

computing. A group of researchers [?] claims, at this writing, to have found quasiparticle Majo-

rana fermions in edge effects in nano-wires. (A line of fermions could have a Majorana fermion

happen non-locally from one end of the line to the other.) The Fibonacci model that we discuss is

also based on Majorana particles, possibly related to collecctive electronic excitations. If P is a

Majorana fermion particle, then P can interact with itself to either produce itself or to annihilate

itself. This is the simple “fusion algebra” for this particle. One can write P 2 = P + 1 to denote
the two possible self-interactions the particle P. The patterns of interaction and braiding of such
a particle P give rise to the Fibonacci model.

Majoranas are related to standard fermions as follows: The algebra for Majoranas is c = c†

and cc′ = −c′c if c and c′ are distinct Majorana fermions with c2 = 1 and c′2 = 1. One can make
a standard fermion from two Majoranas via

ψ = (c + ic′)/2,

ψ† = (c − ic′)/2.

Similarly one can mathematically make two Majoranas from any single fermion. Now if you take

a set of Majoranas

{c1, c2, c3, · · · , cn}

then there are natural braiding operators that act on the vector space with these ck as the basis.

The operators are mediated by algebra elements

τk = (1 + ck+1ck)/
√

2,

τ−1
k = (1 − ck+1ck)/

√
2.

Then the braiding operators are

Tk : Span{c1, c2, · · · , , cn} −→ Span{c1, c2, · · · , , cn}

via

Tk(x) = τkxτ−1
k .
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T(x) = y

T(y) = - x

x

x

x
x

y

y

y

y

Figure 23: Braiding Action on a Pair of Fermions

T (p) = sps−1 = (
1 + yx√

2
)p(

1− yx√
2

),

and verify that T (x) = y and T (y) = −x. Now view Figure 23 where we have illustrated a
topological interpretation for the braiding of two fermions. In the topological interpretation the

two fermions are connected by a flexible belt. On interchange, the belt becomes twisted by 2π.
In the topological interpretation a twist of 2π corresponds to a phase change of −1. (For more
information on this topological interpretation of 2π rotation for fermions, see [45].) Without a
further choice it is not evident which particle of the pair should receive the phase change. The

topology alone tells us only the relative change of phase between the two particles. The Clifford

algebra for Majorana fermions makes a specific choice in the matter and in this way fixes the

representation of the braiding.

Finally, we remark that linear combinations of products in the Clifford algebra can be re-

garded as superpositions of the knot sets. Thus xy + xz is a superposition of the sets with
members {x, y} and{x, z}. Superposition of sets suggests that we are creating a species of quan-
tum set theory and indeed Clifford algebra based quantum set theories have been suggested (see

[19]) by David Finkelstein and others. It may come as a surprise to a quantum set theorist to find

that knot theoretic topology is directly related to this subject. It is also clear that this Clifford

algebraic quantum set theory should be related to our previous constructions for quantum knots

[60, 61, 62, 63, 64]. This requires more investigation, and it suggests that knot theory and the

theory of braids occupy a fundamental place in the foundations of quantum mechanics.
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root of minus one it is natural to introduce another one and call this one i, letting it commute with
the other operators. Then we have the (ieη)2 = +1 and so we have a triple of Majorana fermions:

a = e, b = η, c = ieη

and we can construct the quaternions

I = ba = ηe, J = cb = ie, K = ac = iη.

With the quaternions in place, we have the braiding operators

A =
1√
2
(1 + I), B =

1√
2
(1 + J), C =

1√
2
(1 + K),

and can continue as we did in Section 4.

There is one more comment that is appropriate for this section. Recall from Section 4 that a

pair of Majorana fermions can be assembled to form a single standard fermion. In our case we

have the two Marjorana fermions e and η and the corresponding standard fermion annihilation
and creation operators are then given by the formulas below.

ψ = (e + iη)/2

and

ψ† = (e − iη)/2.

Since e represents a spatial view of the basic discrete oscillation and η is the time-shift operator
for this oscillation it is of interest to note that the standard fermion built by these two can be

regarded as a quantum of spacetime, retrieved from the way that we decomposed the process into

space and time. Since all this is initially built in relation to extending the Boolean logic of the

mark to a non-boolean recursive context, there is further analysis needed of the relation of the

physics and the logic. This will be taken up in a separate paper.

5.2 Relativity and the Dirac Equation

Starting with the algebra structure of e and η and adding a commuting square root of −1, i, we
have constructed fermion algebra and quaternion algebra. We can now go further and construct

the Dirac equation. This may sound circular, in that the fermions arise from solving the Dirac

equation, but in fact the algebra underlying this equation has the same properties as the creation

and annihilation algebra for fermions, so it is by way of this algebra that we will come to the

Dirac equation. If the speed of light is equal to 1 (by convention), then energy E, momentum p
and massm are related by the (Einstein) equation

E2 = p2 + m2.
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Now we show how the Majorana Fermion 
algebra is at the base of the Dirac equation, and 

how nilpotent operators (representing Fermions) 
arise naturally in relation to plane wave solutions 

to the Dirac equation.



Dirac constructed his equation by looking for an algebraic square root of p2 +m2 so that he could

have a linear operator for E that would take the same role as the Hamiltonian in the Schrodinger

equation. We will get to this operator by first taking the case where p is a scalar (we use one
dimension of space and one dimension of time. Let E = αp + βm where α and β are elements
of a a possibly non-commutative, associative algebra. Then

E2 = α2p2 + β2m2 + pm(αβ + βα).

Hence we will satisfiy E2 = p2 + m2 if α2 = β2 = 1 and αβ + βα = 0. This is our familiar
Clifford algebra pattern and we can use the iterant algebra generated by e and η if we wish. Then,
because the quantum operator for momentum is−i∂/∂x and the operator for energy is i∂/∂t, we
have the Dirac equation

i∂ψ/∂t = −iα∂ψ/∂x + βmψ.

Let

O = i∂/∂t + iα∂/∂x − βm

so that the Dirac equation takes the form

Oψ(x, t) = 0.

Now note that

Oei(px−Et) = (E − αp + βm)ei(px−Et)

and that if

U = (E − αp + βm)βα = βαE + βp + αm,

then

U2 = −E2 + p2 + m2 = 0,

from which it follows that

ψ = Uei(px−Et)

is a (plane wave) solution to the Dirac equation.

In fact, this calculation suggests that we should multiply the operator O by βα on the right,
obtaining the operator

D = Oβα = iβα∂/∂t + iβ∂/∂x + αm,

and the equivalent Dirac equation

Dψ = 0.

In fact for the specific ψ above we will now have D(Uei(px−Et)) = U2ei(px−Et) = 0. This way
of reconfiguring the Dirac equation in relation to nilpotent algebra elements U is due to Peter

Rowlands [94]. We will explore this relationship with the Rowlands formulation in a separate

paper.
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so that the Dirac equation takes the form

Oψ(x, t) = 0.

Now note that

Oei(px−Et) = (E − αp − βm)ei(px−Et).

We let

∆ = (E − αp − βm)

and let

U = ∆βα = (E − αp − βm)βα = βαE + βp + αm,

then

U2 = −E2 + p2 + m2 = 0.

This nilpotent element leads to a (plane wave) solution to the Dirac equation as follows: We have

shown that

Oψ = ∆ψ

for ψ = ei(px−Et). It then follows that

O(βα∆βαψ) = ∆βα∆βαψ = U2ψ = 0,

from which it follows that

ψ = βαUei(px−Et)

is a (plane wave) solution to the Dirac equation.

In fact, this calculation suggests that we should multiply the operator O by βα on the right,
obtaining the operator

D = Oβα = iβα∂/∂t + iβ∂/∂x + αm,

and the equivalent Dirac equation

Dψ = 0.

In fact for the specific ψ above we will now have D(Uei(px−Et)) = U2ei(px−Et) = 0. This way
of reconfiguring the Dirac equation in relation to nilpotent algebra elements U is due to Peter

Rowlands [30]. Note that the solution to the Dirac equation that we have found is expressed in

Clifford algebra or iterant algebra form. It can be articulated into specific vector solutions by

using an iterant or matrix representation of the algebra.

We see that U = βαE + βp + αm with U2 = 0 is really the essence of this plane wave
solution to the Dirac equation. This means that a natural non-commutative algebra arises directly

and can be regarded as the essential information in a Fermion. It is natural to compare this algebra

structure with algebra of creation and annihilation operators that occur in quantum field theory.

to this end, let

U † = αβE + αp − βm.
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9.1 Another version of U and U †

We start with ψ = ei(px−Et) and the operators

Ê = i∂/∂t

and

p̂ = −i∂/∂x

so that

Êψ = Eψ

and

p̂ψ = pψ.

The Dirac operator is

O = Ê − αp̂ − βm

and the modified Dirac operator is

D = Oβα = βαÊ + βp̂ − αm,

so that

Dψ = (βαE + βp − αm)ψ = Uψ.

If we let

ψ̃ = ei(px+Et)

(reversing time), then we have

Dψ̃ = (−βαE + βp − αm)ψ = U †ψ̃,

giving a definition of U † corresponding to the anti-particle for Uψ.

We have that

U2 = U †2 = 0

and

UU † + U †U = 4E2.

Thus we have a direct appearance of the Fermion algebra corresponding to the Fermion plane

wave solutions to the Dirac equation.
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Dirac constructed his equation by looking for an algebraic square root of p2 +m2 so that he could

have a linear operator for E that would take the same role as the Hamiltonian in the Schrodinger

equation. We will get to this operator by first taking the case where p is a scalar (we use one
dimension of space and one dimension of time. Let E = αp + βm where α and β are elements
of a a possibly non-commutative, associative algebra. Then

E2 = α2p2 + β2m2 + pm(αβ + βα).

Hence we will satisfiy E2 = p2 + m2 if α2 = β2 = 1 and αβ + βα = 0. This is our familiar
Clifford algebra pattern and we can use the iterant algebra generated by e and η if we wish. Then,
because the quantum operator for momentum is−i∂/∂x and the operator for energy is i∂/∂t, we
have the Dirac equation

i∂ψ/∂t = −iα∂ψ/∂x + βmψ.

Let

O = i∂/∂t + iα∂/∂x − βm

so that the Dirac equation takes the form

Oψ(x, t) = 0.

Now note that

Oei(px−Et) = (E − αp + βm)ei(px−Et)

and that if

U = (E − αp + βm)βα = βαE + βp + αm,

then

U2 = −E2 + p2 + m2 = 0,

from which it follows that

ψ = Uei(px−Et)

is a (plane wave) solution to the Dirac equation.

In fact, this calculation suggests that we should multiply the operator O by βα on the right,
obtaining the operator

D = Oβα = iβα∂/∂t + iβ∂/∂x + αm,

and the equivalent Dirac equation

Dψ = 0.

In fact for the specific ψ above we will now have D(Uei(px−Et)) = U2ei(px−Et) = 0. This way
of reconfiguring the Dirac equation in relation to nilpotent algebra elements U is due to Peter

Rowlands [94]. We will explore this relationship with the Rowlands formulation in a separate

paper.
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to the Dirac Equation.



9.1 Another version of U and U †

We start with ψ = ei(px−Et) and the operators

Ê = i∂/∂t

and

p̂ = −i∂/∂x

so that

Êψ = Eψ

and

p̂ψ = pψ.

The Dirac operator is

O = Ê − αp̂ − βm

and the modified Dirac operator is

D = Oβα = βαÊ + βp̂ − αm,

so that

Dψ = (βαE + βp − αm)ψ = Uψ.

If we let

ψ̃ = ei(px+Et)

(reversing time), then we have

Dψ̃ = (−βαE + βp − αm)ψ = U †ψ̃,

giving a definition of U † corresponding to the anti-particle for Uψ.

We have that

U2 = U †2 = 0

and

UU † + U †U = 4E2.

Thus we have a direct appearance of the Fermion algebra corresponding to the Fermion plane

wave solutions to the Dirac equation.
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Note that we get different decompositions of the 
Fermion into Majorana operators according to what 

is reversed.

{E} and {p,m}  for time reversal.
{p} and {E,m} for spin reversal.

{E,p} and {m} for spin and time reversal.



In analogy to our previous discussion we let

ψ(x, t) = ei(p•x−Et)

and construct solutions by first applying the Dirac operator to this ψ. The two Clifford algebras
interact to generalize directly the nilpotent solutions and Fermion algebra that we have detailed

for one spatial dimension to this three dimensional case. To this purpose the modified Dirac

operator is

D = iβα∂/∂t + β∇ • σ − αm.

And we have that

Dψ = Uψ

where

U = βαE + βp • σ − αm.

We have that U2 = 0 and Uψ is a solution to the modified Dirac Equation, just as before. And just
as before, we can articulate the structure of the Fermion operators and locate the corresponding

Majorana Fermion operators. We leave these details to the reader.

10.3 Majorana Fermions at Last

There is more to do. We will end with a brief discussion making Dirac algebra distinct from the

one generated by α, β, σ1, σ2, σ3 to obtain an equation that can have real solutions. This was the

strategy that Majorana [7] followed to construct his Majorana Fermions. A real equation can have

solutions that are invariant under complex conjugation and so can correspond to particles that are

their own anti-particles. We will describe this Majorana algebra in terms of the split quaternions

ϵ and η. For convenience we use the matrix representation given below. The reader of this paper
can substitute the corresponding iterants.

ϵ =

(

−1 0
0 1

)

, η =

(

0 1
1 0

)

.

Let ϵ̂ and η̂ generate another, independent algebra of split quaternions, commuting with the first
algebra generated by ϵ and η. Then a totally real Majorana Dirac equation can be written as
follows:

(∂/∂t + η̂η∂/∂x + ϵ∂/∂y + ϵ̂η∂/∂z − ϵ̂η̂ηm)ψ = 0.

To see that this is a correct Dirac equation, note that

Ê = αxp̂x + αyp̂y + αzp̂z + βm

(Here the “hats” denote the quantum differential operators corresponding to the energy and mo-

mentum.) will satisfy

Ê2 = p̂x
2 + p̂y

2 + p̂z
2 + m2
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In analogy to our previous discussion we let

ψ(x, t) = ei(p•x−Et)

and construct solutions by first applying the Dirac operator to this ψ. The two Clifford algebras
interact to generalize directly the nilpotent solutions and Fermion algebra that we have detailed

for one spatial dimension to this three dimensional case. To this purpose the modified Dirac
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their own anti-particles. We will describe this Majorana algebra in terms of the split quaternions

ϵ and η. For convenience we use the matrix representation given below. The reader of this paper
can substitute the corresponding iterants.

ϵ =

(

−1 0
0 1

)

, η =

(

0 1
1 0

)

.

Let ϵ̂ and η̂ generate another, independent algebra of split quaternions, commuting with the first
algebra generated by ϵ and η. Then a totally real Majorana Dirac equation can be written as
follows:

(∂/∂t + η̂η∂/∂x + ϵ∂/∂y + ϵ̂η∂/∂z − ϵ̂η̂ηm)ψ = 0.

To see that this is a correct Dirac equation, note that

Ê = αxp̂x + αyp̂y + αzp̂z + βm

(Here the “hats” denote the quantum differential operators corresponding to the energy and mo-

mentum.) will satisfy

Ê2 = p̂x
2 + p̂y

2 + p̂z
2 + m2
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if the algebra generated by αx, αy, αz, β has each generator of square one and each distinct pair
of generators anti-commuting. From there we obtain the general Dirac equation by replacing Ê
by i∂/∂t, and p̂x with −i∂/∂x (and same for y, z).

(i∂/∂t + iαx∂/∂x + iαy∂/∂y + iαz∂/∂y − βm)ψ = 0.

This is equivalent to

(∂/∂t + αx∂/∂x + αy∂/∂y + αz∂/∂y + iβm)ψ = 0.

Thus, here we take

αx = η̂η, αy = ϵ, αz = ϵ̂η, β = iϵ̂η̂η,

and observe that these elements satisfy the requirements for the Dirac algebra. Note how we have

a significant interaction between the commuting square root of minus one (i) and the element ϵ̂η̂
of square minus one in the split quaternions. This brings us back to our original considerations

about the source of the square root of minus one. Both viewpoints combine in the element

β = iϵ̂η̂η that makes this Majorana algebra work. Since the algebra appearing in the Majorana
Dirac operator is constructed entirely from two commuting copies of the split quaternions, there

is no appearance of the complex numbers, and when written out in 2 × 2 matrices we obtain
coupled real differential equations to be solved. Clearly this ending is actually a beginning of a

new study of Majorana Fermions. That will begin in a sequel to the present paper.
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Core of our 
joint work with 

Peter 
Rowlands.
Forming a 
nilpotent 

version of the 
Majorana-Dirac 

Equation.



Using the Majorana Operators A and B 
with AB = -BA and A^2 = B^2 = - m^2.



Thus we now see, via the nilpotent 
approach to the Dirac equation, how the 

Majorana Operators are directly related to 
real solutions to the Majorana-Dirac 

Equation.



Thus
∂ψ

∂t
=

((
1 0

0 −1

)
∂

∂x
+

(
0 −i

−i 0

))

ψ . (12)

Hence (−iψ2

−iψ1

)

=

( ∂ψ1
∂l

∂ψ2

∂r

)

. (13)

We shall call (Eq. 13) the RII Dirac equation.

3 Discrete Calculus and Solutions to the Dirac

Equation

Suppose that f = f(x) is a function of a variable x. Let ∆ be a fixed non-zero

constant. The discrete derivative of f with respect to ∆ is then defined by the

equation

D∆f(x) =
f(x + ∆)− f(x)

∆
. (14)

Consider the function

x(n) = x(x −∆)(x− 2∆) · · · (x− (n − 1)∆) . (15)

Lemma.

D∆x(n) = nx(n−1) . (16)

Proof.

(x + ∆)(n) − x(n) =

(x +∆)(x)(x−∆) · · · (x− (n− 2)∆)− (x)(x−∆) · · · (x− (n− 2)∆)(x− (n− 1)∆) =

[(x + ∆) − (x− (n − 1)∆)]x(n−1) = n∆x(n−1) .

Thus

D∆x(n) =
n∆x(n−1)

∆
= nx(n−1) . (17)

We are indebted to Eddie Grey for reminding us of this fact [8].

Note that as ∆ approaches zero x(n) approaches xn, the usual nth power of x.

Note also that
x(n)

∆nn!
= Cx/∆

n (18)
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RII:

where

Cz
n =

z(z − 1) · · · (z − n + 1)

n!
(30)

denotes the choice coefficient.

(r,  ) = (7, 0)

x

t

r = (t+x)/2
 = (t–x)/2 8131A10

(r,  ) = (0, 0)

(r,  ) = (7, 3)

(r,  ) = (0, 3)

3–96

Figure 1: Rectangular lattice in Minkowski space-time.

We are thinking of r and ℓ as the light cone coordinates r = 1
2 (t + x), ℓ =

1
2 (t − x). Hence, in a standard diagram for Minkowski space-time, a pair of values

[r, ℓ] determines a rectangle with sides of length ℓ and r on the left and right pointing

light cones. (We take the speed of light c = 1.) This is shown in Figure. 1.

Clearly, the simplest way to think about this combinatorics is to take ∆ = 1. If

we wish to think about the usual continuum limit, then we shall fix values of r and ℓ

and choose ∆ small but such that r/∆ and ℓ/∆ are integers. The combinatorics of an

r×ℓ rectangle with integers r and ℓ is no different in principle than the combinatorics

of an (r/∆)× (ℓ/∆) rectangle with integers r/∆ and ℓ/∆. Accordingly, we shall take

∆ = 1 for the rest of this discussion, and then make occasional comments to connect

this with the general case.
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we wish to think about the usual continuum limit, then we shall fix values of r and ℓ

and choose ∆ small but such that r/∆ and ℓ/∆ are integers. The combinatorics of an

r×ℓ rectangle with integers r and ℓ is no different in principle than the combinatorics

of an (r/∆)× (ℓ/∆) rectangle with integers r/∆ and ℓ/∆. Accordingly, we shall take

∆ = 1 for the rest of this discussion, and then make occasional comments to connect

this with the general case.

8

ψ = ΣP iC(P ) 

Formalism, Metaphor and the Art of Mathematics

Louis H. Kauffman
Department of Mathematics, Statistics

and Computer Science (m/c 249)
851 South Morgan Street

University of Illinois at Chicago
Chicago, Illinois 60607-7045

<kauffman@uic.edu>

Abstract
Void

1 Introduction
⇥ = �P iC(P )

� =⇥(
(�1)1/� � 1⇤

�1
)

This is an essay about Art and Mathematics, written from the point of view of a
mathematician. In that sense this is an essay about the art of mathematics, not about art
as a domain separate from mathematics. And yet ... there is, I believe, a subtle influence
of the arts (music, literature, poetry, painting, sculpture, theatre,...) on mathematics,
and concomittantly, an influence of mathematics on these fields of aesthetic action.
I can only competently write about the mathematical, but in musing on this theme
some opinions will naturally come forth. I had best say a few of them right at the
outset. I firmly believe that the creative source of good art and good mathematics is
the same. I believe that source to be the human desire and need to go across apparent
boundaries and find commonality and communication between and among seemingly
separate domains. In fact, this is the engine of metaphor. Metaphor declares the identity
of that which common sense declares different. “Juliet is the sun.” Only in the realm
of metaphor can we make such an identification, and yet indeed Juliet and the sun
are bound in radience. It is the identification of Juliet and the sun that makes this a
metaphor and not an analogy. The declaration of identity wipes away the superficial
difference and directs us to the deep relation beneath the surface.

C(P) = 
number

of corners in 
path P

Dirac Amplitude

P



9.2 The Majorana Version of the Dirac Equation

∂ψ2/∂r = ψ2

∂ψ1/∂l = −ψ1

Return now to the original version of the Dirac equation.

i∂ψ/∂t = −iα∂ψ/∂x + βmψ.

We can rewrite this as

∂ψ/∂t = α∂ψ/∂x + iβmψ.

We see that if iβ is real, then we can write a fully real version of the Dirac equation. For example,
we can take the equation

∂ψ/∂t = e∂ψ/∂x + eηmψ.

where we represent

e =

(

−1 0
0 1

)

and

η =

(

0 1
1 0

)

as matrix versions of the iterants associated with the reentering mark. For the case of one di-

mension of space and one dimension of time, this is the Majorana representation for the Dirac

equation (compare [?]). Since the equation can have real solutions, these are their own complex

conjugates and correspond to particles that are their own anti-particles. As the reader can check,

the corresponding Rowland nilpotent U is given by the formula

U = −iηE + ieηp + em.

For effective application to the topics in this paper, one needs to use two dimensions of space and

one dimension of time.
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In the RII, Majorana Fermion case we have

Thus the Checkerboard works with plus/minus cornering.
This model gives a picture of how Majorana’s 

equations can look in an explicit case and 
show how discrete quantum physics may 

avoid complex numbers.











In fact, this solution to the 
Feynmann Checkerboard model is 
different from the solutions from 

the path sum, suggesting new 
approaches to the original problem 

of path integrals for the Dirac 
equation.





In spacetime algebra terms the Dirac operator becomes







This provides a platform for 
deeper study of the Majorana 

Dirac Equation. 



But we should take a WIDER VIEW.

The universal equation should be about the (state of) 
the Universe U.

D U = 0.

But the universe U is both operator and operand.
So we take D = U and obtain

the Universal Nilpotent Equation.
UU = 0,

of which the Dirac equation is one of the first 
special cases.

An operator D acts on U to produce Nothing.



The Simplest example of the Universal Nilpotent Equation
is given by the operator

Ux =   x

Here the Universe U is that Universe 
(self) created by the Mark and taken to 

Nothing by the crossing from the marked state to the 
unmarked state.

UU = =

UU = 0.

.



In this formalism the mark is seen
to make a distinction.

The formal language of the
calculus of indications refers to the mark and is 

built from the mark.

The language using the mark is inherently self-
referential. 

The mark and the observer are seen, in the form, 
to be identical. 

The Calculus writes itself in terms of 
itself.



Physical theory is
seen to write itself in terms of the condition

for observation to occur at all.




