On hyperelliptic Euclidean 3-manifolds

Bao Vuong joint work with Alexandr Mednykh

Novosibirsk State University, Novosibirsk, Russia

Geometry, topology and dynamics Novosibirsk State University Dec 14, 2020

Bao Vuong (NSU)

On hyperelliptic Euclidean 3-manifolds

Dec. 14, 2020 1/9

Hyperelliptic involution

Let S_g be a Riemann surface of genus g, g > 1. An involution $\tau \in Iso(S_g)$ is said to be *hyperelliptic* if the quotient space $S_g/\langle \tau \rangle$ is homeomorphic to the 2-dimensional sphere S^2 .

A Riemann surface is said to be *hyperelliptic* if it admits a hyperelliptic involution

Fig.: Rotation by π about the indicated axis is a hyperelliptic involution

2/9

Bao Vuong (NSU)

Let M be an *n*-dimensional manifold. Suppose that there exists an involution $\tau: M \to M$ such that the quotient space $M/\langle \tau \rangle$ is homeomorphic to the *n*-dimensional sphere S^n . Then, τ is said to be a *hyperelliptic involution* and M is said to be a *hyperelliptic manifold*. If M admits a geometric structure then we assume in the definition that τ is an isometry.

Fact: If *M* is a 3-dimensional hyperelliptic manifold, with a hyperelliptic involution τ , then *M* is the 2-fold branched covering of S^3 branched over some link (in particular, a knot) *L*. The covering is given by the action of τ and each point of *L* has branching index 2.

In this situation, M is the 2-fold covering of a π -orbifold $O^3 = S^3(L)$ with underling space S^3 and singular set L with singular angle π at each point of L.

Bao Vuong (NSU)

 $\mathbb{H}^2 \times \mathbb{R}, \quad \mathbb{S}^2 \times \mathbb{R}, \quad E^3, \quad \text{Sol}, \quad \text{Nil}, \quad \mathbb{S}^3, \quad \widetilde{SL_2R}, \quad \mathbb{H}^3$

Survey paper titled The geometries of 3-manifolds by Peter Scott http://www.math.lsa.umich.edu/~pscott/ A nice post about picturing these geometries.

https://mathoverflow.net/questions/24572/drawing-of-the-eight-thurston-geometries

William Thurston in 1991

Bao Vuong (NSU)

On hyperelliptic Euclidean 3-manifolds

Existence of hyperelliptic manifolds in each of the eight Thurston geometries was shown by A. D. Mednykh $^{\rm 1}$

There are 6 closed orientable Euclidean manifolds. In notations of J.A. Wolf ² they are G_i , i = 1, 2, 3, 4, 5, 6.

The first one is the three-dimensional torus. R. H. Fox ³ showed that the *n*-torus is not a double branched covering of S^n for n > 2. So, the three dimensional torus is not a hyperelliptic manifold.

W. Dunbar in his Ph.D. thesis classified all oriented Euclidean fibered orbifolds with underlying space S^3

Only eight of them are π -orbifolds.

²J. A. Wolf, Spaces of Constant Curvature (Publish or Perish, Houston, 1974)

 3 R. H. Fox, A note on branched cyclic covering of spheres, Rev. Mat. Hisp.-Amer. 4(32) (1972) 158–166.

¹A. D. Mednykh, Three-dimensional hyperelliptic manifolds, Ann. Global Anal. Geom. 8 (1990) 13–19.

Eight oriented Euclidean fibered π -orbifolds

 $I2_{1}2_{1}2_{1}$

 $P222_{1}$

 $P6_{1}22$

Bao Vuong (NSU)

On hyperelliptic Euclidean 3-manifolds

Theorem (Mednykh, V., 2020)

Each of the manifolds $\mathcal{G}_2, \mathcal{G}_3, \mathcal{G}_4, \mathcal{G}_5, \mathcal{G}_6$ is a double branched covering of a Euclidean π -orbifold O^3 with underlying space S^3 and singular set which is a link.

In Table below for each orbifold O^3 we point out which Euclidean manifold M^3 is obtained as its double branched covering.

lds O^3 .		
$(^3, \mathbb{Z})$	Orbifold O^3	Singular set of O^3
\mathbb{Z}_2^2	$P222_{1}$	P(-2,2,-2,2)
\mathbb{Z}_3	$P3_{1}12, P3_{2}12$	P(1, -3, -3, -3), P(-1, 3, 3, 3)
\mathbb{Z}_2	$P4_{3}22, P4_{1}22$	$P(2,-4,-4),\ P(-2,4,4)$
Z	$P6_122, P6_522$	$P(2,-3,-6),\ P(-2,3,6)$
$<\mathbb{Z}_4$	$I2_{1}2_{1}2_{1}$	Borromean rings
	$<\mathbb{Z}_4$	$<\mathbb{Z}_4$ $I2_12_12_1$

One-to-one correspondence between Euclidean mani-Table 1

On hyperelliptic Euclidean 3-manifolds

Alexander Mednykh and Bao Vuong, *On hyperelliptic Euclidean 3-manifolds* // Journal of Knot Theory and Its Ramifications, 8 pp. (accepted)

Thank you for your attention!

On hyperelliptic Euclidean 3-manifolds