Volumes of knots in spaces of constant curvature

Alexander Mednykh

Sobolev Institute of Mathematics
Novosibirsk State University
Laboratory of Topology and Dynamics

14 December 2020

Three geometries of constant curvature

(1) Euclidean geometry $\mathbb{E}^{3}, K=0$ (Euclid)
(2) Spherical geometry $\mathbb{S}^{3}, K>0$ (before Euclid ?) Studed by Riemann
(3) Hyperbolic geometry $\mathbb{H}^{3}, K<0$ (N.I. Lobachevsky and Janos Bolyai)
(9) Eight geometries by William Thurston:

$$
\mathbb{E}^{3}, \mathbb{S}^{3}, \mathbb{H}^{3}, \mathbb{S}^{2} \times \mathbb{R}, \mathbb{H}^{2} \times \mathbb{R}, \text { Nil, Solv and } \widetilde{\operatorname{PSL}}(2, \mathbb{R})
$$

Thurston's geometrization conjecture: Any three dimensional manifold can be decomposed into pieces, each modeled in one of the eight above mentioned geometries.

This conjecture was proved by Grigori Perelman in 2003. As as consequence, he proved the famous Poincaré conjecture:
Any closed three dimensional manifold with the trivial fundamental group is the sphere.

Cone-manifold and geometry knots

Following (D. Cooper, C.D. Hodgson and S.P. Kerckhoff, 2000) we introduce the basic definitions from the cone-manifold theory.

Definition

An n-dimensional cone-manifold is a manifold, M, which can be triangulated so that the link of each simplex is piecewise linear homeomorphic to a standard sphere and M is equipped with a complete path metric such that the restriction of the metric to each simplex is isometric to a geodesic simplex of constant curvature K. The cone-manifold is hyperbolic, Euclidean or spherical if K is $-1,0$, or +1 respectively.

The singular set Σ of a cone-manifold M consists of the points with no neighbourhood isometric to a ball in a Riemannian manifold.
In the present paper, we will deal only with cone-manifolds whose underlying space M is the three dimensional sphere \mathbb{S}^{3} and singular set Σ is a knot or link.

Schläfli formula

The main tool for volume calculation is the following Schläfli formula. Let M be a 3-dimensional cone-manifold of constant curvature $K= \pm 1$. Then its volume V is a solution of the differential equation

$$
K d V=\frac{1}{2} \sum_{i} I_{\alpha_{i}} d \alpha_{i}
$$

where the sum is taken over all components of the singular set Σ with lengths $I_{\alpha_{i}}$ and cone-angles α_{i}.

Geometry of two bridge knots. Trefoil knot.

Let $\mathcal{T}(\alpha)=3_{1}(\alpha)$ be a cone-manifold whose underlying space is the three-dimensional sphere \mathcal{S}^{3} and singular set is trefoil knot \mathcal{T} with cone angle α. See Figure below.

Pис.: Cone-manifold $3_{1}(\alpha)$

Since \mathcal{T} is a toric knot by the Thurston theorem its complement $\mathcal{T}(0)=\mathcal{S}^{3} \backslash \mathcal{T}$ in the \mathcal{S}^{3} does not admit a hyperbolic structure. However, the trefoil knot admits othrer geometric structures. By H. Seifert and C. Weber (1933) the spherical space of dodecahedron (also known as the Poincaré homology 3-sphere) is a cyclic 5-fold covering of \mathcal{S}^{3} branched over \mathcal{T}. This means that cone-manifold $3_{1}\left(\frac{2 \pi}{5}\right)$ has a spherical structure.

Geometry of two bridge knots. Trefoil knot.

Note that $\mathcal{T}(2 \pi / n), n \in \mathbb{N}$ is a geometric orbifold, so it can be represented in the form \mathbb{X}^{3} / Γ, where \mathbb{X}^{3} is one of the eight three-dimensional homogeneous geometries and Γ is a discrete group of isometries of \mathbb{X}^{3}. By Dunbar classification (1983) of non-hyperbolic orbifolds, $\mathcal{T}(2 \pi / n)$ has a spherical structure for $n \leq 5$, Nil for $n=6$ and $\widetilde{\operatorname{PSL}}(2, \mathbb{R})$ for $n \geq 7$. Quite surprising situation appears in the case of the trefoil knot complement $\mathcal{T}(0)$. By P. Norbury (see Appendix A in the lecture notes by W. P. Neumann), the manifold $\mathcal{T}(0)$ admits two geometrical structures $\mathbb{H}^{2} \times \mathbb{R}$ and $\widetilde{\operatorname{PSL}}(2, \mathbb{R})$.

Geometry of two bridge knots. Trefoil knot.

The following theorem describes a spherical structure on the trefoil cone-manifold.

Theorem

The trefoil cone-manifold $\mathcal{T}(\alpha)$ is spherical for $\frac{\pi}{3}<\alpha<\frac{5 \pi}{3}$. The spherical volume of $\mathcal{T}(\alpha)$ is given by the formula

$$
\operatorname{Vol}(\mathcal{T}(\alpha))=\frac{(3 \alpha-\pi)^{2}}{12}
$$

For the proof consider \mathbb{S}^{3} as the unite sphere in the complex space \mathbb{C}^{2} endowed by the Riemannian metric

$$
\mathrm{d} s_{\lambda}^{2}=|\mathrm{dz}|^{2}+|\mathrm{dz}|^{2}+\lambda\left(\mathrm{d} \mathrm{z}_{1} \mathrm{~d} \overline{\mathrm{z}}_{2}+\mathrm{d} \overline{\mathrm{z}}_{1} \mathrm{dz}_{2}\right)
$$

where $\lambda=\left(2 \sin \frac{\alpha}{2}\right)^{-1}$. Then $\mathbb{S}^{3}=\left(\mathbb{S}^{3}, \mathrm{~d} s_{\lambda}^{2}\right)$ is the spherical space of constant curvature +1 .

The fundamental set for $\mathcal{T}(\alpha)$ is given by the following polyhedron

Рис.: Fundamental set for $\mathcal{T}(\alpha)$
where $E=e^{i \alpha}$ and $F=e^{i \frac{\alpha-\pi}{2}}$ (see Figure 2). The length ℓ_{α} of singular geodesic of $\mathcal{T}(\alpha)$ is given by $\ell_{\alpha}=\left|P_{0} P_{3}\right|+\left|P_{1} P_{4}\right|=3 \alpha-\pi$. By the Schläfli formula $\mathrm{dVol} \mathcal{T}(\alpha)=\frac{\ell_{\alpha}}{2} \mathrm{~d} \alpha=\frac{3 \alpha-\pi}{2} \mathrm{~d} \alpha$. So, $\operatorname{Vol} \mathcal{T}(\alpha)=\frac{(3 \alpha-\pi)^{2}}{12}+C$, where C is a constant of integration. Recall that a 2 -fold cover of orbifold $3_{1}(\pi)$ is the lens space $L(3,1)$ which, in turn, is thrice covered by the three dimensional sphere \mathbb{S}^{3}. Since the spherical volume of \mathbb{S}^{3} is $2 \pi^{2}$, we have $\operatorname{Vol} \mathcal{T}(\pi)=2 \pi^{2}: 6=\frac{\pi^{2}}{3}$.
Therefore, $\mathcal{C}=0$ and $\operatorname{Vol} \mathcal{T}(\alpha)=\frac{(3 \alpha-\pi)^{2}}{12}$.

Geometry of two bridge knots. 4_{1} - knot.

The figure eight knot or 4_{1} knot is the unique prime knot of four crossings.

Pис.: Figure eight knot 41

Geometry of two bridge knots. 41- knot.

It was shown in Thurston lecture notes (1990) that the figure eight knot compliment $\mathbb{S}^{3} \backslash 4_{1}$ can be obtained by gluing two copies of a regular ideal tetrahedron. Thus, $\mathbb{S}^{3} \backslash 4_{1}$ admits a complete hyperbolic structure. Independently, the existence of the complete hyperbolic structure on the complement of the figure eight knot was proved by R. Riley in his unpublished manuscript. Later, it was discovered by A.C. Kim, H. Helling and J. Mennicke (1998) that the n-fold cyclic coverings of the 3 -sphere branched over 4_{1} produce beautiful examples of the hyperbolic Fibonacci manifolds.

Geometry of two bridge knots. 41- knot.

The following result takes a place due to W.P. Thurston, H.M. Hilden, M.T. Lozano, J.M. Montesinos (1998), S. Kojima (1998), A.A. Rasskazov and A.D. Mednykh (2006).

Theorem

A cone-manifold $4_{1}(\alpha)$ is hyperbolic for $0 \leq \alpha<\alpha_{0}=2 \pi / 3$. Euclidean for $\alpha=\alpha_{0}$ and spherical for $\alpha_{0}<\alpha<2 \pi-\alpha_{0}$.

Other geometries on the figure eight cone-manifold were studied by C. Hodgson, W. Dunbar, E. Molnár, J. Szirmai and A. Vesnin (2009).

Geometry of two bridge knots. 41- knot.

The volume of the figure eight cone-manifold in the spaces of constant curvature is given by the following theorem.

Theorem 6 (A. Rasskazov and M., 2006)

Let $\mathrm{V}(\alpha)=\operatorname{Vol} 4_{1}(\alpha)$ and ℓ_{α} is the length of singular geodesic of $4_{1}(\alpha)$. Then
$\left(\mathbb{H}^{3}\right) \mathrm{V}(\alpha)=\int_{\alpha}^{\alpha_{0}} \operatorname{arccosh}(1+\cos \theta-\cos 2 \theta) \mathrm{d} \theta, 0 \leq \alpha<\alpha_{0}=\frac{2 \pi}{3}$,
$\left(\mathbb{E}^{3}\right) \mathrm{V}\left(\alpha_{0}\right)=\frac{\sqrt{3}}{108} \ell_{\alpha_{0}}^{3}$,
$\left(\mathbb{S}^{3}\right) \mathrm{V}(\alpha)=\int_{\alpha_{0}}^{\alpha} \arccos (1+\cos \theta-\cos 2 \theta) \mathrm{d} \theta, \alpha_{0}<\alpha \leq \pi, \quad \mathrm{V}(\pi)=\frac{\pi^{2}}{5}$,

$$
\mathrm{V}(\alpha)=2 \mathrm{~V}(\pi)+\pi(\alpha-\pi)-\mathrm{V}(2 \pi-\alpha), \pi \leq \alpha<2 \pi-\alpha_{0}
$$

Geometry of two bridge knots. 4_{1} - knot.

The following fundamental polyhedron can be realized in each of three spaces of constant curvature $\mathbb{H}^{3}, \mathbb{S}^{3}$, and \mathbb{E}^{3}.

Рис.: Fundamental set for a two bridge knot

Geometry of two bridge knots and links

- The three twist knot 5_{2}

The knot 5_{2} is a rational knot of a slope $7 / 2$.

Historically, it was the first knot which was related with hyperbolic geometry. Indeed, it has appeared as a singular set of the hyperbolic orbifold constructed by L.A. Best (1971) from a few copies of Lannér tetrahedra with Coxeter scheme $0 \equiv 0-0=0$. The fundamental set of this orbifold is a regular hyperbolic cube with dihedral angle $2 \pi / 5$. Later, R. Riley (1979) discovered the existence of a complete hyperbolic structure on the complement of 5_{2}. In his time, it was one of the nine known examples of knots with hyperbolic complement.

Geometry of two bridge knots. $5_{2}-$ knot.

A few years later, it has been proved by W. Thurston that all non-satellite, non-toric prime knots possess this property. Just recently it became known (2007) that the Weeks-Fomenko-Matveev manifold \mathcal{M}_{1} of volume $0.9427 \ldots$ is the smallest among all closed orientable hyperbolic three manifolds. We note that \mathcal{M}_{1} was independently found by J. Przytycki and his collaborators (1986). It was proved by A. Vesnin and M. (1998) that manifold \mathcal{M}_{1} is a cyclic three fold covering of the sphere \mathbb{S}^{3} branched over the knot 5_{2}. It was shown by J. Weeks computer program Snappea and proved by Moto-O Takahahsi (1989) that the complement $\mathbb{S}^{3} \backslash 5_{2}$ is a union of three congruent ideal hyperbolic tetrahedra.

Geometry of two bridge knots. 5_{2} - knot.

The next theorem has been proved by A. Rasskazov and M. (2002), R. Shmatkov (2003) and J. Porti (2004) for hyperbolic, Euclidian and spherical cases, respectively.

Theorem

A cone manifold $5_{2}(\alpha)$ is hyperbolic for $0 \leq \alpha<\alpha_{0}$, Euclidean for $\alpha=\alpha_{0}$, and spherical for $\alpha_{0}<\alpha<2 \pi-\alpha_{0}$, where $\alpha_{0} \simeq 2.40717 \ldots$ and $A_{0}=\cot \left(\frac{\alpha_{0}}{2}\right)$ is given by the formula
$A_{0}=\sqrt{1 / 23(-17-8 \sqrt{2}+2 \sqrt{-235+344 \sqrt{2}})}$.

Geometry of two bridge knots. 5_{2} - knot.

Theorem 8 (A. Mednykh, 2009)

Let $5_{2}(\alpha), 0 \leq \alpha<\alpha_{0}$ be a hyperbolic cone-manifold. Then the volume of $5_{2}(\alpha)$ is given by the formula

$$
\operatorname{Vol}\left(5_{2}(\alpha)\right)=i \int_{\bar{z}}^{z} \log \left[\frac{8\left(\zeta^{2}+A^{2}\right)}{\left(1+A^{2}\right)(1-\zeta)(1+\zeta)^{2}}\right] \frac{d \zeta}{\zeta^{2}-1},
$$

where $A=\cot \frac{\alpha}{2}$ and $z, \Im z>0$ is a root of equation

$$
8\left(z^{2}+A^{2}\right)=\left(1+A^{2}\right)(1-z)(1+z)^{2} .
$$

A completely different approach to find volume of the above cone-manifold is contained in our resent paper (Ji-Young Ham, Alexander Mednykh, Vladimir Petrov, 2014).

Geometry of two bridge knots. $5_{2}-$ knot.

Spherical volume of the $5_{2}-$ knot is given by the following theorem.

Theorem

Let $5_{2}(\alpha), \alpha_{0}<\alpha<2 \pi-\alpha_{0}$ be a spherical cone-manifold. Then for any $\alpha, \alpha_{0}<\alpha<\pi$, the volume $V(\alpha)$ of $5_{2}(\alpha)$ is given by the formula

$$
V(\alpha)=\int_{z_{1}}^{z_{2}} \log \left(\frac{8\left(\zeta^{2}+A^{2}\right)}{\left(1+A^{2}\right)(1-\zeta)(1+\zeta)^{2}}\right) \frac{d \zeta}{\zeta^{2}-1}
$$

where $A=\cot \frac{\alpha}{2}$ and $z_{1}, z_{2},\left(-1<z_{1}<z_{2}\right)$ are roots of the cubic equation

$$
8\left(z^{2}+A^{2}\right)=\left(1+A^{2}\right)(1-z)(1+z)^{2} .
$$

Also, $V(\pi)=\pi^{2} / 7$ and

$$
V(\alpha)=2 V(\pi)+\pi(\alpha-\pi)-V(2 \pi-\alpha) \text { for } \pi<\alpha<2 \pi-\alpha_{0} .
$$

How to get a hyperbolic structure?

Let M be a hyperbolic 3-dimensional cone-manifold whose singular set Σ_{α} is a knot with cone angle $\alpha, 0<\alpha \leq 2 \pi$. Choose the canonical longitude-meridian pair (I, m) in the fundamental group $\pi_{1}\left(M \backslash \Sigma_{\alpha}\right)$ in such a way that m is an oriented boundary of meridian disc of Σ_{α} and a longitude curve I is nullhomologous outside of Σ_{α}. Let $h: \pi_{1}\left(M \backslash \Sigma_{\alpha}\right) \rightarrow \operatorname{PSL}(2, \mathbb{C})$ be the holonomy map of $M \backslash \Sigma_{\alpha}$. Then (see F. Gonzalez-Acuña, J. M. Montesinos-Amilibia, 1993) h admits two liftings to $S L(2, \mathbb{C})$. The image of I in $S L(2, \mathbb{C})$ under these two liftings is the same since I is nullhomologous outside the singular set. Thus up to conjugation in $S L(2, \mathbb{C})$,

$$
h(m)= \pm\left[\begin{array}{cc}
e^{i \frac{\alpha}{2}} & 0 \\
0 & e^{-i \frac{\alpha}{2}}
\end{array}\right], h(I)=\left[\begin{array}{cc}
e^{\frac{\gamma_{\alpha}}{2}} & 0 \\
0 & e^{-\frac{\gamma_{\alpha}}{2}}
\end{array}\right]
$$

where $\gamma_{\alpha}=\ell_{\alpha}+i \varphi_{\alpha}, \ell_{\alpha}$ is the length of Σ_{α}, and $\varphi_{\alpha},-2 \pi \leq \varphi_{\alpha}<2 \pi$, is the angle of the lifted holonomy of Σ_{α}. For the sake of simplicity, we will refer to $\gamma_{\alpha}=\ell_{\alpha}+i \varphi_{\alpha}$ as a complex length of the singular geodesics Σ_{α}.

How to get a spherical structure?

Let M be a spherical cone-manifold and Σ_{α} be it singular set formed by a knot. Let (I, m) be the canonical longitude-meridian pair in the fundamental group $\pi_{1}\left(M \backslash \Sigma_{\alpha}\right)$. Following HLM (1996), we note that the holonomy map $h: \pi_{1}\left(M \backslash \Sigma_{\alpha}\right) \rightarrow S O(4)$ has two lifts into $S U(2) \times S U(2)$. Up to conjugation in $S U(2) \times S U(2)$, they are given by the formulas

$$
\begin{aligned}
h(m) & =\left(\pm\left[\begin{array}{cc}
e^{i \frac{\alpha}{2}} & 0 \\
0 & e^{-i \frac{\alpha}{2}}
\end{array}\right], \pm\left[\begin{array}{cc}
e^{i \frac{\alpha}{2}} & 0 \\
0 & e^{-i \frac{\alpha}{2}}
\end{array}\right]\right), \\
h(I) & =\left(\left[\begin{array}{cc}
e^{i \gamma} & 0 \\
0 & e^{-i \gamma}
\end{array}\right],\left[\begin{array}{cc}
e^{i \phi} & 0 \\
0 & e^{-i \phi}
\end{array}\right]\right) .
\end{aligned}
$$

In this case, $\ell_{\alpha}=\gamma-\phi$ is the length of knot Σ_{α}, and $\varphi_{\alpha}=\gamma+\phi,-2 \pi \leq \varphi_{\alpha}<2 \pi$, is the angle of the lifted holonomy of Σ_{α}. We have the following important relations

$$
\begin{equation*}
\gamma=\frac{1}{2}\left(\varphi_{\alpha}+\ell_{\alpha}\right), \phi=\frac{1}{2}\left(\varphi_{\alpha}-\ell_{\alpha}\right) . \tag{1}
\end{equation*}
$$

A-polynomial equation

In this report, we contribute a notion of A-polynomial for $M \backslash \Sigma_{\alpha}$ given by (D. Cooper, M. Culler, H. Gillet, D.D. Long and P.B. Shalen, 1994).
In the hyperbolic case, cone angle α and complex length $\gamma_{\alpha}=\ell_{\alpha}+i \varphi_{\alpha}$ of knot Σ_{α} are related by the equation

$$
\begin{equation*}
A(L, M)=0, \text { where } L=e^{\frac{\gamma_{\alpha}}{2}} \text { and } M=e^{i \frac{\alpha}{2}} \tag{2}
\end{equation*}
$$

Also, by the basic properties of A-polynomial we have $A(L, M)=A\left(L^{-1}, M\right)$ and $A(L, M)=A(L,-M)$.
Up to our knowledge, A-polynomials never used before in spherical geometry.
Form the above observation, in the spherical geometry, A-polynomial equation has the form

$$
\begin{equation*}
A(L, M)=0, \text { where } L=e^{\frac{i}{2}\left(\varphi_{\alpha} \pm \ell_{\alpha}\right)}, \text { and } M=e^{i \frac{\alpha}{2}} \tag{3}
\end{equation*}
$$

Geometry of two bridge knots. 5_{2} - knot.

The proof of the spherical volume formula is based on the following Cotangent Rule. Indeed, this is a trigonometrical version of the A-polynomial equation.

Theorem

Let $5_{2}(\alpha), \alpha_{0}<\alpha<2 \pi-\alpha_{0}$ be a spherical cone-manifold. Denote by ℓ_{α} the length of the longitude of $4_{1}(\alpha)$ and by φ_{α} the angle of its lifted holonomy. Then

$$
\cot \left(\frac{4 \alpha+\varphi_{\alpha} \pm \ell_{\alpha}}{4}\right) \cot \left(\frac{\alpha}{2}\right)=z_{1,2},
$$

where z_{1} and is z_{2} are roots of the equation $8\left(z^{2}+A^{2}\right)=\left(1+A^{2}\right)(1-z)(1+z)^{2}$ and $A=\cot \left(\frac{\alpha}{2}\right)$.

Proof of the Cotangent Rule for $5_{2}-$ knot.

The A-polynomial of knot 5_{2} is given by

$$
\begin{aligned}
A_{52}(L, M) & =L^{3} M^{14}+L^{2}\left(-M^{14}+2 M^{12}+2 M^{10}-M^{6}+M^{4}\right) \\
& +L\left(M^{10}-M^{8}+2 M^{4}+2 M^{2}-1\right)+1
\end{aligned}
$$

We set $L=e^{\frac{i}{2}\left(\varphi_{\alpha} \pm \ell_{\alpha}\right)}$ and $M=e^{i \frac{\alpha}{2}}$. Then, by the spherical version of A-polynomial equation we have $A_{52}(L, M)=0$. To find its trigonometrical version we set $z=\frac{\left(L M^{4}+1\right)\left(M^{2}+1\right)}{\left(L M^{4}-1\right)\left(M^{2}-1\right)}$ and $A=i \frac{M^{2}+1}{M^{2}-1}=\cot \left(\frac{\alpha}{2}\right)$. Eliminating L and M from the obtained equations, we derive that $\cot \left(\frac{4 \alpha+\varphi_{\alpha} \pm \ell_{\alpha}}{4}\right) \cot \left(\frac{\alpha}{2}\right)=z$ and equation $A_{52}(L, M)=0$ is equivalent to $8\left(z^{2}+A^{2}\right)=\left(1+A^{2}\right)(1-z)(1+z)^{2}$.

Proof of the spherical volume formula

Suppose that $\alpha_{0}<\alpha<\pi$. Let ℓ_{α} be the length of the longitude for $5_{2}(\alpha)$ and φ_{α} be the angle of its lifted holonomy. By the Cotangent Rule, there are real roots z_{1} and z_{2} of the equation $8\left(z^{2}+A^{2}\right)=\left(1+A^{2}\right)(1-z)(1+z)^{2}$ such that $z_{1}=\cot \left(\frac{4 \alpha+\varphi_{\alpha}-\ell_{\alpha}}{4}\right) \cot \left(\frac{\alpha}{2}\right)$ and $z_{2}=\cot \left(\frac{4 \alpha+\varphi_{\alpha}+\ell_{\alpha}}{4}\right) \cot \left(\frac{\alpha}{2}\right)$. Consider the function

$$
V(\alpha)=\int_{z_{1}}^{z_{2}} \frac{\log F(A, \zeta)}{\zeta^{2}-1} d \zeta
$$

where $F(A, \zeta)=\frac{8\left(\zeta^{2}+A^{2}\right)}{\left(1+A^{2}\right)(1-\zeta)(1+\zeta)^{2}}$ and $A=\cot \left(\frac{\alpha}{2}\right)$. To prove the integral volume formula, one has to show that $V(\alpha)$ satisfies the Schläfli equation $V^{\prime}(\alpha)=\frac{\ell_{\alpha}}{2}$ with initial data $V\left(\alpha_{0}\right)=0$. Taking into account that z_{1} and z_{2} are roots of the integrant, we obtain

Proof of the spherical volume formula

$$
\begin{gathered}
\frac{d V(\alpha)}{d \alpha}=\frac{\log F\left(A, z_{2}\right)}{z_{2}^{2}-1} \frac{d z_{2}}{d \alpha}-\frac{\log F\left(A, z_{1}\right)}{z_{1}^{2}-1} \frac{d z_{1}}{d \alpha} \\
+\int_{z_{1}}^{z_{2}} \frac{\partial}{\partial A}\left(\frac{\log F(A, \zeta)}{\zeta^{2}-1}\right) \frac{d A}{d \alpha} d \zeta=\int_{z_{1}}^{z_{2}} \frac{A}{A^{2}+\zeta^{2}} d \zeta \\
=\operatorname{arccot}\left(z_{2} / A\right)-\operatorname{arccot}\left(z_{1} / A\right) \\
=\left(\frac{4 \alpha+\varphi_{\alpha}+\ell_{\alpha}}{4}\right)-\left(\frac{4 \alpha+\varphi_{\alpha}-\ell_{\alpha}}{4}\right)=\frac{\ell_{\alpha}}{2} .
\end{gathered}
$$

Proof of the spherical volume formula

Note that function $A=\cot \left(\frac{\alpha}{2}\right)$ is strictly increasing on the interval $\alpha_{0}<\alpha<\pi$ and varies from 0 to $A_{0}=\cot \left(\frac{\alpha_{0}}{2}\right)=0.3846585 \ldots$ For any $A \in\left(0, A_{0}\right)$, the cubic equation $8\left(z^{2}+A^{2}\right)=\left(1+A^{2}\right)(1-z)(1+z)^{2}$ has three real solutions z_{1}, z_{2}, z_{3} which are continuous functions of A.
Two of them, z_{1}, z_{2} chosen such that $-1<z_{1}<z_{2}$, satisfy the property $z_{1}, z_{2} \rightarrow z_{0}=\sqrt{2}-\sqrt{2 \sqrt{2}-1}=0.0620201 \ldots$ as $A \rightarrow A_{0}$. This ensures that the initial condition $V\left(\alpha_{0}\right)=0$ holds. The third one z_{3}, satisfies the inequality $z_{3}<-8$ on ($0, A_{0}$) and has no geometrical meaning.
Now let $\alpha=\pi$. Since 5_{2} is a rational knot with slope $7 / 2$, we have

$$
\operatorname{Vol}\left(5_{2}(\pi)\right)=\frac{1}{2} \operatorname{Vol}(L(7,2))=\frac{1}{14} \operatorname{Vol}\left(\mathbb{S}^{3}\right)=\frac{\pi^{2}}{7}
$$

The equality $V(\alpha)=2 V(\pi)+\pi(\alpha-\pi)-V(2 \pi-\alpha)$ for $\pi<\alpha<2 \pi-\alpha_{0}$ follows from the Schäfli formula and the identity $\ell_{\alpha}=2 \pi-\ell_{2 \pi-\alpha}$.

Specific Euclidean volume of $5_{2}(\alpha)$

The following theorem gives the specific volume of cone-manifold $5_{2}(\alpha)$ in the Euclidean case. Numerically, this result was obtained earlier by R. N. Shmatkov in his Ph.D. thesis (2003).

Theorem

Let $5_{2}\left(\alpha_{0}\right)$, where $\alpha_{0}=2.40717 \ldots$ be an Euclidean cone-manifold. Then its specific volume $v_{0}=\frac{\operatorname{Vol}\left(5_{2}\left(\alpha_{0}\right)\right)}{\ell_{\alpha_{0}}}$ is given by the formula

$$
\operatorname{vol}\left(5_{2}\left(\alpha_{0}\right)\right)=1 /(6 \sqrt{-6+68 \sqrt{2}+4 \sqrt{983+946 \sqrt{2}}})=0.00990963 \ldots
$$

To prove the theorem, we note that $v_{0}=\lim _{\alpha \rightarrow \alpha_{0}} \frac{\operatorname{Vol}\left(5_{2}(\alpha)\right)}{\ell_{\alpha}^{3}}$ and $\operatorname{Vol}\left(5_{2}(\alpha)\right) \rightarrow 0$ and $\ell_{\alpha} \rightarrow 0$ as $\alpha \rightarrow \alpha_{0}$. Assume $0<\alpha<\alpha_{0}$. Then, by making use of the Schläfli formula and L'Hôpital's rule we obtain $v_{0}=\lim _{\alpha \rightarrow \alpha_{0}} \frac{\left(\operatorname{Vol}\left(5_{2}(\alpha)\right)\right)_{\alpha}^{\prime}}{\left(\ell_{\alpha}^{3}\right)_{\alpha}^{\prime}}=\lim _{\alpha \rightarrow \alpha_{0}} \frac{-\ell_{\alpha} / 2}{3 \ell_{\alpha}^{2}\left(\ell_{\alpha}\right)_{\alpha}^{\prime}}=\lim _{\alpha \rightarrow \alpha_{0}} \frac{1}{-3\left(\ell_{\alpha}^{2}\right)_{\alpha}^{\prime}}$.

We also have the following result for Stevedore's Knot 6_{1}.

Theorem

The volume of the hyperbolic cone-manifold $6_{1}(\alpha)$ is given by integral

$$
i \int_{\bar{z}}^{z} \log \left[\frac{8\left(\zeta^{2}+A^{2}\right)}{\left(1+A^{2}\right)(1-\zeta)\left(2+\zeta+\zeta^{2}-(1-\zeta) \sqrt{2+2 \zeta+\zeta^{2}}\right)}\right] \frac{d \zeta}{\zeta^{2}-1},
$$

where $A=\cot \frac{\alpha}{2}$ and z and \bar{z} are complex conjugated roots of the integrand.

Pис.: Knot 6_{1}

Tables

We resume the results of numerical calculation for limit of hyperbolicity α_{0} and specific Euclidean volume v_{0} in the following table. The table contains all hyperbolic knots up to 7 crossings.

Knot	Slope	Limit of hyperboliciy α_{0}	Specific volume v_{0}
4_{1}	$5 / 2,5 / 3$	2.094395	0.01603750
5_{2}	$7 / 2,7 / 3$	2.407169	0.00990963
6_{1}	$9 / 2,9 / 5$	2.574141	0.00732926
6_{2}	$11 / 3,11 / 4$	2.684035	0.00538066
6_{3}	$13 / 5,13 / 8$	2.757265	0.00431666
7_{2}	$11 / 2,11 / 6$	2.678787	0.00585537
7_{3}	$13 / 3,13 / 9$	2.755110	0.00449424
7_{4}	$15 / 4,15 / 11$	2.808209	0.00376538
7_{5}	$17 / 5,17 / 7$	2.848733	0.00321842
7_{6}	$19 / 8,19 / 12$	2.880078	0.00283945
7_{7}	$21 / 8,21 / 13$	2.905300	0.00254482

