Discretization of Commuting Ordinary Differential Operators.

Gulnara Mauleshova
based on joint works with Andrey Mironov
Sobolev Institute of Mathematics

Novosibirsk - 2020

We denote by L_{k}, L_{s} the operators of orders $k=N_{-}+N_{+}$and $s=M_{-}+M_{+}$

$$
L_{k}=\sum_{j=-N_{-}}^{N_{+}} u_{j}(n) T^{j}, \quad L_{s}=\sum_{j=-M_{-}}^{M_{+}} v_{j}(n) T^{j},
$$

where $n \in \mathbb{Z}, N_{ \pm}, M_{ \pm} \geq 0, T$ is the shift operator

$$
T f(n)=f(n+1), \quad f: \mathbb{Z} \rightarrow \mathbb{C}
$$

If two difference operators L_{k} and L_{s} commute, then there is a nonzero polynomial $F(z, w)$ such that $F\left(L_{k}, L_{s}\right)=0$. The polynomial F defines the spectral curve of the pair L_{k}, L_{s}

$$
\Gamma=\left\{(z, w) \in \mathbb{C}^{2} \mid F(z, w)=0\right\} .
$$

The common eigenvalues are parametrized by the spectral curve

$$
L_{k} \psi=z \psi, \quad L_{s} \psi=w \psi, \quad(z, w) \in \Gamma .
$$

The dimension of the space of common eigenfunctions of the pair L_{k}, L_{s} for fixed eigenvalues is called the rank of L_{k}, L_{s}

$$
l=\operatorname{dim}\left\{\psi: L_{k} \psi=z \psi, \quad L_{s} \psi=w \psi, \quad(z, w) \in \Gamma .\right\}
$$

Any commutative ring of difference operators in one discrete variable is isomorphic to the ring of meromorphic functions on a spectral curve with s fixed poles (I. M. Krichever, S. P. Novikov). Such operators are said to be s-point.

Spectral data were found:

- $l=1, m=2, \forall g-\mathrm{I}$. M. Krichever.
- $l=1, m=1, \forall g-G . S$. Mauleshova, A. E. Mironov.
- $l>1, m=1, \forall g-$ I. M. Krichever, S. P. Novikov.

Examples were found:

- $l=1, m=2, \forall g-\mathrm{I} . \mathrm{M}$. Krichever, D. Mumford.
- $l=1, m=1, \forall g-G . S$. Mauleshova, A. E. Mironov.
- $l=2, m=1, g=1-\mathrm{I}$. M. Krichever, S. P. Novikov.
- $l=2, m=1, \forall g-G . S$. Mauleshova, A. E. Mironov.

Consider the one-point operators of rank two

$$
L_{4}=\sum_{i=-2}^{2} u_{i}(n) T^{i}, \quad L_{4 g+2}=\sum_{i=-(2 g+1)}^{2 g+1} v_{i}(n) T^{i}, \quad u_{2}=v_{2 g+1}=1,
$$

with hyperelliptic spectral curve Γ genus g

$$
\begin{equation*}
w^{2}=F_{g}(z)=z^{2 g+1}+c_{2 g} z^{2 g}+c_{2 g-1} z^{2 g-1}+\ldots+c_{0}, \tag{1}
\end{equation*}
$$

herewith

$$
L_{4} \psi=z \psi, \quad L_{4 g+2} \psi=w \psi, \quad \psi=\psi(n, P), \quad P=(z, w) \in \Gamma .
$$

Common eigenfunctions of L_{4} and $L_{4 g+2}$ satisfy the equation

$$
\begin{equation*}
\psi(n+1, P)=\chi_{1}(n, P) \psi(n-1, P)+\chi_{2}(n, P) \psi(n, P), \tag{2}
\end{equation*}
$$

where $\chi_{1}(n, P)$ and $\chi_{2}(n, P)$ are rational functions on Γ having $2 g$ simple poles, depending on n (I.M. Krichever, S.P. Novikov). The function $\chi_{2}(n, P)$ additionally has a simple pole at $q=\infty$. To find L_{4} and $L_{4 g+2}$ it is sufficient to find χ_{1} and χ_{2}. Let σ be the holomorphic involution on Γ,

$$
\sigma(z, w)=(z,-w)
$$

Theorem 1

If

$$
\chi_{1}(n, P)=\chi_{1}(n, \sigma(P)),
$$

then L_{4} has the form

$$
L_{4}=\left(T+U_{n}+V_{n} T^{-1}\right)^{2}+W_{n},
$$

where

$$
\begin{gathered}
\chi_{1}=-V_{n} \frac{Q_{n+1}}{Q_{n}}, \quad \chi_{2}=\frac{w}{Q_{n}}+\frac{S_{n}}{Q_{n}}, \\
Q_{n}=-\frac{S_{n-1}+S_{n}}{U_{n-1}+U_{n}}, \quad S_{n}(z)=-U_{n} z^{g}+\delta_{g-1}(n) z^{g-1}+\ldots+\delta_{0}(n) .
\end{gathered}
$$

Functions $V_{n}, U_{n}, W_{n}, Q_{n}$ satisfy the equation

$$
\begin{gather*}
F_{g}(z)=S_{n}^{2}+V_{n} Q_{n-1} Q_{n+1}+V_{n+1} Q_{n} Q_{n+2}+ \tag{3}\\
\left(z-U_{n}^{2}-V_{n}-V_{n+1}-W_{n}\right) Q_{n} Q_{n+1}
\end{gather*}
$$

Corollary 1

Functions $S_{n}(z), V_{n}, U_{n}, W_{n}$ satisfy

$$
\begin{gathered}
\left(U_{n}+U_{n+1}\right)\left(S_{n}-S_{n+1}\right)-V_{n} Q_{n-1}+V_{n+2} Q_{n+3}- \\
\left(z-U_{n}^{2}-V_{n}-V_{n+1}-W_{n}\right) Q_{n}+ \\
\left(z-U_{n+1}^{2}-V_{n+1}-V_{n+2}-W_{n+1}\right) Q_{n+2}=0 .
\end{gathered}
$$

Theorem 2

In the case of an elliptic spectral curve Γ, given by the equation

$$
w^{2}=F_{1}(z)=z^{3}+c_{2} z^{2}+c_{1} z+c_{0}
$$

operator L_{4} type

$$
L_{4}=\left(T+U_{n}+V_{n} T^{-1}\right)^{2}+W_{n},
$$

where

$$
\begin{gathered}
U_{n}=-\frac{\nu_{n}+\nu_{n+1}}{\gamma_{n}-\gamma_{n+1}}, \quad V_{n}=\frac{\nu_{n}^{2}-F_{1}\left(\gamma_{n}\right)}{\left(\gamma_{n}-\gamma_{n-1}\right)\left(\gamma_{n+1}-\gamma_{n}\right)}, \\
W_{n}=-c_{2}-\gamma_{n}-\gamma_{n+1},
\end{gathered}
$$

γ_{n}, ν_{n} - arbitrary function parametres, commute with operator

$$
L_{6}=L_{4}\left(T+U_{n}+V_{n} T^{-1}\right)-\gamma_{n+2} T-\left(\nu_{n}+U_{n} \gamma_{n}\right)-V_{n} \gamma_{n-1} T^{-1} .
$$

Theorem 3

The operator

$$
L_{4}=\left(T+a+\left(r_{3} n^{3}+r_{2} n^{2}+r_{1} n+r_{0}\right) T^{-1}\right)^{2}+g(g+1) r_{3} n, \quad r_{3} \neq 0
$$

commutes with a difference operator $L_{4 g+2}$.

If $\nu_{n}=0$, then $U_{n}=0$. Therefore, we have

$$
L_{4}=\left(T+V_{n} T^{-1}\right)^{2}+W_{n}
$$

- difference operator of rank two.

If $\nu_{n}= \pm \sqrt{F_{1}\left(\gamma_{n}\right)}$, then $V_{n}=0$. Therefore, we have

$$
L_{2}=\left(T+U_{n}\right)^{2}+W_{n}
$$

- difference operator of rank one.

Formally Self-Adjoint Operators

$$
\begin{equation*}
\mathcal{L}_{4}=\left(\partial_{x}^{2}+\mathcal{U}(x)\right)^{2}+\mathcal{W}(x) \tag{4}
\end{equation*}
$$

где

$$
\mathcal{U}(x)=\frac{-16 F_{1}\left(-\left(c_{2}+\mathcal{W}\right) / 2\right)+\mathcal{W}_{x x}^{2}-2 \mathcal{W}_{x} \mathcal{W}_{x x x}}{4 \mathcal{W}_{x}^{2}}
$$

commute with operator

$$
\begin{equation*}
\mathcal{L}_{6}=\left(\partial_{x}^{2}+\mathcal{U}\right)^{3}+\frac{1}{2}\left(c_{2}+3 \mathcal{W}\right)\left(\partial_{x}^{2}+\mathcal{U}\right)+\frac{3}{2} \mathcal{W}_{x} \partial_{x}+\frac{5}{4} \mathcal{W}_{x x} \tag{5}
\end{equation*}
$$

Let T_{ε} is the shift operator on $\varepsilon, T_{\varepsilon} f(x)=f(x+\varepsilon)$.

Theorem 4

Operator

$$
L_{4}^{b}=\left(\frac{T_{\varepsilon}}{\varepsilon^{2}}+U(x, \varepsilon)+\varepsilon^{2} V(x, \varepsilon) T_{\varepsilon}^{-1}\right)^{2}+W(x, \varepsilon),
$$

where

$$
\begin{gather*}
U(x, \varepsilon)=-\frac{\nu(x, \varepsilon)+\nu(x+\varepsilon, \varepsilon)}{\gamma(x, \varepsilon)-\gamma(x+\varepsilon, \varepsilon)}, \quad W(x, \varepsilon)=-c_{2}-\gamma(x, \varepsilon)-\gamma(x+\varepsilon, \varepsilon), \\
V(x, \varepsilon)=\frac{\nu^{2}(x, \varepsilon)-F_{1}(\gamma(x, \varepsilon))}{(\gamma(x, \varepsilon)-\gamma(x-\varepsilon, \varepsilon))(\gamma(x+\varepsilon, \varepsilon)-\gamma(x, \varepsilon))}, \tag{6}
\end{gather*}
$$

$\gamma(x), \nu(x)$ - arbitrary functions, commute with operator

$$
L_{6}^{b}=L_{4}^{b}\left(\frac{T_{\varepsilon}}{\varepsilon^{2}}+U(x, \varepsilon)+\varepsilon^{2} V(x, \varepsilon) T_{\varepsilon}^{-1}\right)-
$$

$$
\gamma(x+2 \varepsilon, \varepsilon) \frac{T_{\varepsilon}}{\varepsilon^{2}}-(\nu(x, \varepsilon)+U(x, \varepsilon) \gamma(x, \varepsilon))-\varepsilon^{2} V(x, \varepsilon) \gamma(x-\varepsilon, \varepsilon) T_{\varepsilon}^{-1} .
$$

Example 1. Spectral curve of operators L_{4}^{b}, L_{6}^{b} is given by the equation

$$
w^{2}=F_{1}(z)=z^{3}+c_{2} z^{2}+c_{1} z+c_{0}
$$

Let

$$
\gamma(x, \varepsilon)=-\frac{1}{2}\left(c_{2}+\mathcal{W}(x)\right), \quad \nu(x, \varepsilon)=\frac{\mathcal{W}_{x}}{2 \varepsilon} .
$$

Then

$$
L_{4}^{b}=\mathcal{L}_{4}+O(\varepsilon), \quad L_{6}^{b}=\mathcal{L}_{6}+O(\varepsilon)
$$

Moreover, the spectral curves of the pairs L_{4}^{b}, L_{6}^{b} and $\mathcal{L}_{4}, \mathcal{L}_{6}$ coincide.

By analogy with Theorem 3, we can prove that ε-difference operator
$\tilde{L}_{4}=\left(\frac{T_{\varepsilon}}{\varepsilon^{2}}-\frac{2}{\varepsilon^{2}}+\left(\frac{1}{\varepsilon^{2}}+r_{3} x^{3}+r_{2} x^{2}+r_{1} x+r_{0}\right) T^{-1}\right)^{2}+r_{3}(g(g+1) x+\varepsilon), r_{3} \neq 0$
commute with some operator $\tilde{L}_{4 g+2}$. In the limit of $\varepsilon \rightarrow 0$, this operator goes to the next differential operator

$$
L_{4}^{\sharp}=\left(\partial_{x}^{2}+r_{3} x^{3}+r_{2} x^{2}+r_{1} x+r_{0}\right)^{2}+g(g+1) r_{3} x,
$$

which commute with $L_{4 g+2}^{\sharp}$. The operators $L_{4}^{\sharp}, L_{4 g+2}^{\sharp}$ define a commutative subalgebra in the first Weil algebra with a spectral curve of genus g. For $g=1$, the spectral curve of the pair $L_{4}^{\sharp}, L_{6}^{\sharp}$ coincides with the spectral curve of the operators $\tilde{L}_{4}, \tilde{L}_{6}$. For $g>1$, the spectral curve of $\tilde{L}_{4}, \tilde{L}_{4 d+2}$ depends on ε. In order to obtain operators whose spectral curve does not depend on ε, instead of the constants r_{j}, you need to find some functions of ε.

$$
[H, M]=0,
$$

where $H=\partial_{x}^{2}+u(x), M=\partial_{x}^{2 g+1}+v_{2 g}(x) \partial_{x}^{2 g}+\ldots+v_{0}(x)$. The spectral curve Γ of the pair H, M is given by an equation of the form $w^{2}=F_{g}(z)$, and if $\psi(x)$ is a common eigenfunction, i.e.,

$$
H \psi(x)=z \psi(x), \quad M \psi(x)=w \psi(x),
$$

then $(z, w) \in \Gamma$.

Example.

$$
\begin{gathered}
\psi=e^{-x \zeta(z)} \frac{\sigma(z+x)}{\sigma(x) \sigma(z)} \\
\left(\partial_{x}^{2}-2 \wp(x)\right) \psi(x, z)=\wp(z) \psi(x, z), \\
\left(\partial_{x}^{3}-3 \wp(x) \partial_{x}-\frac{3}{2} \wp^{\prime}(x)\right) \psi(x, z)=\frac{1}{2} \wp^{\prime}(z) \psi(x, z) .
\end{gathered}
$$

Lame operators

$$
\partial_{x}^{2}-g(g+1) \wp(x)
$$

Example 2. If $\gamma(x, \varepsilon)=\wp(x-\varepsilon), \nu(x, \varepsilon)=\wp^{\prime}(x-\varepsilon)$ in Theorem 4, then

$$
\begin{gathered}
L_{4}^{b}=\frac{T_{\varepsilon}^{2}}{\varepsilon^{2}}+(-2 \zeta(\varepsilon)-\zeta(x-\varepsilon)+\zeta(x+\varepsilon)) \frac{T_{\varepsilon}}{\varepsilon}+\wp(\varepsilon) \\
L_{6}^{b}=\frac{T_{\varepsilon}^{3}}{\varepsilon^{3}}-(3 \zeta(\varepsilon)+\zeta(x-\varepsilon)-\zeta(x+2 \varepsilon)) \frac{T_{\varepsilon}^{2}}{\varepsilon^{2}}+
\end{gathered}
$$

$((\zeta(\varepsilon)+\zeta(x-\varepsilon)-\zeta(x))(\zeta(\varepsilon)+\zeta(x)-\zeta(x+\varepsilon))+2 \wp(\varepsilon)+\wp(x)) \frac{T_{\varepsilon}}{\varepsilon}+\frac{1}{2} \wp^{\prime}(\varepsilon)$.
Moreover,

$$
\begin{gathered}
L_{4}^{b}=\left(\partial_{x}^{2}-2 \wp(x)\right)+O(\varepsilon) \\
L_{6}^{b}=\left(\partial_{x}^{3}-3 \wp(x) \partial_{x}-\frac{3}{2} \wp^{\prime}(x)\right)+O(\varepsilon) .
\end{gathered}
$$

Consider the function $A_{g}(x, \varepsilon)$ defined as follows. We put

$$
A_{1}=-2 \zeta(\varepsilon)-\zeta(x-\varepsilon)+\zeta(x+\varepsilon)
$$

and

$$
A_{2}=-\frac{3}{2}(\zeta(\varepsilon)+\zeta(3 \varepsilon)+\zeta(x-2 \varepsilon)-\zeta(x+2 \varepsilon))
$$

where $\zeta(x)$ is the Weierstrass function. Next, for odd $g=2 g_{1}+1$, we put

$$
A_{g}=A_{1} \prod_{k=1}^{g_{1}}\left(1+\frac{\zeta(x-(2 k+1) \varepsilon)-\zeta(x+(2 k+1) \varepsilon)}{\zeta(\varepsilon)+\zeta((4 k+1) \varepsilon)}\right)
$$

and for even $g=2 g_{1}$, we put

$$
A_{g}=A_{2} \prod_{k=2}^{g_{1}}\left(1+\frac{\zeta(x-2 k \varepsilon)-\zeta(x+2 k \varepsilon)}{\zeta(\varepsilon)+\zeta((4 k-1) \varepsilon)}\right)
$$

Theorem 5

The operator

$$
L_{2}=\frac{T_{\varepsilon}^{2}}{\varepsilon^{2}}+A_{g}(x, \varepsilon) \frac{T_{\varepsilon}}{\varepsilon}+\wp(\varepsilon)
$$

commutes with $L_{2 g+1}$. Moreover,

$$
L_{2}=\partial_{x}^{2}-g(g+1) \wp(x)+O(\varepsilon) .
$$

Treibich-Verdier operator

$$
-\partial_{x}^{2}+\sum_{i=0}^{3} a_{i}\left(a_{i}+1\right) \wp\left(x+\omega_{i}\right)
$$

were ω_{i} is a half periods and

$$
\left(\wp^{\prime}(x)\right)^{2}=4 \wp^{3}(x)+g_{2} \wp^{2}(x)+g_{1} \wp(x)+g_{0} .
$$

Let

$$
\left(\left(\frac{1}{\sin ^{2}(x)}\right)^{\prime}\right)^{2}=4\left(\frac{1}{\sin ^{2}(x)}\right)^{2}\left(\frac{1}{\sin ^{2}(x)}-1\right)
$$

Special case

$$
\partial_{x}^{2}-\left(\frac{6}{\sin ^{2}(x)}+\frac{2}{\cos ^{2}(x)}\right) .
$$

Let

$$
\begin{aligned}
A_{2}= & \left(-\frac{3}{4} \varepsilon-\frac{9}{8} \varepsilon^{3}\right)(2 \cot (\varepsilon)+\tan (\varepsilon-x)+\tan (\varepsilon+x)) \times \\
& (\cot (\varepsilon)+\cot (3 \varepsilon)-\cot (2 \varepsilon-x)-\cot (2 \varepsilon+x))
\end{aligned}
$$

Example 3. The operator

$$
L_{2}=\frac{T_{\varepsilon}^{2}}{\varepsilon^{2}}+A_{2}(x, \varepsilon) \frac{T_{\varepsilon}}{\varepsilon}+\wp(\varepsilon)
$$

commutes with L_{5}. Moreover,

$$
L_{2}=\partial_{x}^{2}-\left(\frac{6}{\sin ^{2}(x)}+\frac{2}{\cos ^{2}(x)}\right)+O(\varepsilon)
$$

Thank you for attention!

