Объемы прямоугольных

 многогранников в$$
\begin{aligned}
& \text { пространстве } \\
& \text { Лобачевского }
\end{aligned}
$$

Егоров Андрей
13 декабря, 2020
конференция «Геометрия, топология и динамика»

Introduction

In H^{3} we consider right-angled hyperbolic polyhedra of two types:

1. Compact (Pogorelov polyhedra) - compact - all vertices are finite,
2. Ideal - with all vertices on the absolute.

Corollory (Andreev's theorem)
A bounded hyperbolic polyhedron in $H^{n}, \mathrm{n} \geq 3$, with non-obtuse dihedral angles is uniquely defined by its combinatorics and dihedral angles.

Compact right-angled polyhedra in H^{3}

Combinatorial structure

Theorem (Pogorelov 1967, Andreev 1970)
A polyhedral graph P can be realized in H^{3} as a bounded right-angled polyhedron if and only if

1. any vertex is incident to 3 edges;
2. any face has at least 5 sides;
3. if a simple closed curve on the surface of the polyhedron separates two faces (prismatic circuit), then it intersects at least 5 edges.

This polyhedron satisfies 1) and 2), but not 3) condition

Reformulation in terms of cyclic connectivity

Definition A graph is called cyclically k-connected if at least k edges have to be removed to split it into two connected components that both have a cycle.

Theorem (Pogorelov, Andreev) A polyhedral graph is realized as a graph of a bounded right-angled polyhedron in H^{3} if and only if it is 3 -valent and cyclically 5connected. Moreover, such an implementation is unique.

The program called Plantri, written by G. Brinkmann and B. McKay, can generate such a graphs (in fact, dual to them).

Euler's formula

From Euler's formula $\mathrm{V}-\mathrm{E}+\mathrm{F}=2$ and 3 -valence, $2 \mathrm{E}=3 \mathrm{~V}$, it follows that $F=(V+4) / 2$.
Let p_{k} denote the number of k-gonal faces $(k \geq 5)$ of P. Then

$$
p_{5}=12+\sum_{k>6} p_{k}(k-6)
$$

Consequently, each bounded right-angled polyhedron has at least 12 pentagonal faces.
A dodecahedron is a bounded right-angled polyhedron with a minimum number of faces (12 pentagons).

Löbell polyhedra

For any $\mathrm{n} \geq 5$, there is a right-angled hyperbolic polyhedron $\mathrm{L}(\mathrm{n})$ that has $(2 n+2)$ faces. $L(5)$ and $L(6)$ look like this.

Polyhedra L(n) is called Löbell polyhedra.

Theorem (A. Yu. Vesnin, 1987)
$\operatorname{vol}(L(n))=\frac{n}{2}\left(2 \Lambda\left(\theta_{n}\right)+\Lambda\left(\theta_{n}+\frac{\pi}{n}\right)++\Lambda\left(\theta_{n}-\frac{\pi}{n}\right)+\Lambda\left(\frac{\pi}{2}-2 \theta_{n}\right)\right)$,
where $\theta_{n}=\frac{\pi}{2}-\arccos \left(\frac{1}{2 \cos \frac{\pi}{n}}\right)$.

Composition / decomposition

Let there be two combinatorial polyhedra P_{1} и P_{2} with kgonal faces $F_{1} \subset P_{1}$ и $F_{2} \subset P_{2}$. Their composition is $P=$ $P_{1} \bigcup_{F_{1}=F_{2}} P_{2}$.
If P_{1} and P_{2} are realized as compact right-angled polyhedra in H^{3}, then P is realized as a compact rightangled polyhedron in H^{3}.

Edge insertion/ edge deleting

R

L(6)

$$
R-e
$$

$L(6)+e$

We can get any polyhedron from Löbell polyhedra

Theorem (T. Inoue, 2008)
For any compact right-angled hyperbolc polyhedron P there exists a sequence of unions of right-angled hyperbolic polyhedra P_{1}, \ldots, P_{k} such that each set P_{i} is obtained from P_{i-1} by decomposition or edge surgery, and P_{k} consists of Löbell polyhedra. Moreover,

$$
\operatorname{vol}\left(P_{0}\right) \geq \operatorname{vol}\left(P_{1}\right) \geq \operatorname{vol}\left(P_{2}\right) \geq \ldots \geq \operatorname{vol}\left(P_{k}\right) .
$$

Atkinson's volume bounds

Theorem (C. Atkinson, 2009) Let P be a compact right-angled hyperbolic polyhedron with N vertices. Then

$$
(N-2) \frac{v_{8}}{32} \leq \operatorname{vol}(P)<(N-10) \frac{5 v_{3}}{8}
$$

Constants v_{3} and v_{8} have a following meaning :

- $v_{3}=3 \wedge\left(\frac{\pi}{3}\right)=1.0149416064096535 \ldots$,
- $v_{8}=8 \wedge\left(\frac{\pi}{4}\right)=3.663862376708876 \ldots$

Improved upper bound

Theorem (Egorov - Vesnin)
Let P be a compact right-angled hyperbolic polyhedron with N vertices. If P is not a right-angled dodecahedron, then

$$
\operatorname{vol}(P)<(N-14) \frac{5 v_{3}}{8}
$$

Informally speaking, large faces reduce the volume

Left: polyhedron with minimal volume Right: polyhedron with maximum volume

Upper bounds considering face sizes

Theorem (Egorov - Vesnin)
Let P be a compact right-angled hyperbolic polyhedron with N ≥ 24 vertices. Let F_{1} and F_{2} be two faces of P such that F_{1} is n_{1}-gon and F_{2} is n_{2}-gon. Then

$$
\operatorname{vol}(P)<\left(N-n_{1}-n_{2}\right) \frac{5 v_{3}}{8}
$$

Corollary

Let P be a compact right-angled hyperbolic polyhedron with N vertices. Let F_{1}, F_{2} and F_{3} be three faces of P such that F_{2} is adjanced to F_{1} and F_{3}. Suppose that the face F_{i} is a n_{i}-gon, $i=$ $1,2,3$. Then

$$
\operatorname{vol}(P)<\left(N-n_{1}-n_{2}-n_{3}+4\right) \frac{5 v_{3}}{8}
$$

Volumes of compact right-angled polyhedra, Atkinson's lower bound, new upper bound.

Fullerenes

Fullerenes are called trivalent polyhedra, the faces of which are 5 and 6-gons.

Theorem (Došlić, 2005) Every fullerene can be realized as compact right-angled hyperbolic polyhedron.

Ideal right-angled polyhedra

Combinatorial structure

Theorem (I. Rivin, 1992)
A polyhedral graph is realized as a graph of an ideal right-angled polyhedron in H^{3} if and only if it is 4valent and cyclically 6 -connected. Moreover, such an realization is unique.

Can be generated using plantri.

Euler's formula

From Euler's formula $\mathrm{V}-\mathrm{E}+\mathrm{F}=2$ and 4 -valence, $2 \mathrm{E}=4 \mathrm{~V}$, it follows that $\mathrm{F}=\mathrm{V}+2$.
Let p_{k} denote the number of k-gonal faces $(k \geq 3)$ of P. Then

$$
p_{3}=8+\sum_{k>4} p_{k}(k-4)
$$

Therefore, each ideal right-angled polyhedron has at least 8 triangular faces.
An octahedron is an ideal right-angled polyhedron with a minimum number of faces (8 triangles).

Aniprisms

Theorem (W. Thurston, 1980)
Let $n \geq 3$, then the volume of an ideal rightangled antiprism $A(n)$ is expressed as follows

$$
\operatorname{vol}(A(n))=2 n\left(\Lambda\left(\frac{\pi}{4}+\frac{\pi}{2 n}\right)+\Lambda\left(\frac{\pi}{4}-\frac{\pi}{2 n}\right)\right) .
$$

Edge twisting

Let e_{1} and e_{2} be two non-adjacent edges that lie on the same face. Edge
 twisting consists in removing edges e_{1} and e_{2}, and then, creating a new vertex v and connecting it with edges

P

P^{*} to the ends of the removed edges

A(4)

A(4)*

All polyhedra are obtained from A (4))

Theorem (G. Brinkmann, 2000)
Every ideal right-angled hyperbolic polyhedron is either an antiprism or can be obtained from an antiprism by edge twisting operations.

Theorem (N.Yu. Erokhovets, 2019)
Every ideal right-angled hyperbolic polyhedron either an antiprism $A(n), n \geq 3$, or is obtained from $A(4)$ by edge twisting operations.

Atkinson's volume bounds

Theorem (C. Atkinson, 2009)
Let P be an ideal right-angled hyperbolic polyhedron with N vertices. Then

$$
(N-2) \frac{v_{8}}{4} \leq \operatorname{vol}(P) \leq(N-4) \frac{v_{8}}{2}
$$

Improved upper bound

Theorem (Egorov - Vesnin)
Let P be an ideal right-angled hyperbolic polyhedron with $N \geq$ 10 vertices. Then

$$
\operatorname{vol}(P)<(N-5) \frac{v_{8}}{2}
$$

Upper bounds considering face sizes

Theorem (Egorov - Vesnin)

Let P be an ideal right-angled hyperbolic polyhedron with N vertices. Let F_{1} and F_{2} be two faces of P such that F_{1} is $n_{1}{ }^{-}$ gon and F_{2} is n_{2}-gon, $n_{1}, n_{2} \geq 4$. Then

$$
\operatorname{vol}(P)<\left(N-\frac{n_{1}}{2}-\frac{n_{2}}{2}\right) \frac{v_{8}}{2}
$$

Corollary

Let P be an ideal right-angled hyperbolic polyhedron with N vertices. Let F_{1}, F_{2} and F_{3} be three faces of P such that F_{2} is adjanced to F_{1} and F_{3}. Suppose that the face F_{i} is a n_{i}-gon, $i=$ 1, 2, 3. Then

$$
\operatorname{vol}(P)<\left(N-n_{1}-n_{2}-n_{3}+1\right) \frac{v_{8}}{2}
$$

Thanks for attention!

