Объемы прямоугольных многогранников в пространстве Лобачевского

Егоров Андрей

13 декабря, 2020

конференция «Геометрия, топология и динамика»

Introduction

In H^3 we consider right-angled hyperbolic polyhedra of two types:

- Compact (Pogorelov polyhedra) compact all vertices are finite,
- 2. Ideal with all vertices on the absolute.

Corollory (Andreev's theorem)

A bounded hyperbolic polyhedron in H^n , $n \ge 3$, with non-obtuse dihedral angles is uniquely defined by its combinatorics and dihedral angles.

Compact right-angled polyhedra in H^3

Combinatorial structure

Theorem (Pogorelov 1967, Andreev 1970)

A polyhedral graph P can be realized in H^3 as a bounded right-angled polyhedron if and only if

- 1. any vertex is incident to 3 edges;
- 2. any face has at least 5 sides;
- 3. if a simple closed curve on the surface of the polyhedron separates two faces (prismatic circuit), then it intersects at least 5 edges.

This polyhedron satisfies 1) and 2), but not 3) condition

Reformulation in terms of cyclic connectivity

Definition A graph is called cyclically k-connected if at least k edges have to be removed to split it into two connected components that both have a cycle.

Theorem (Pogorelov, Andreev) A polyhedral graph is realized as a graph of a bounded right-angled polyhedron in H^3 if and only if it is 3-valent and cyclically 5connected. Moreover, such an implementation is unique.

The program called Plantri, written by G. Brinkmann and B. McKay, can generate such a graphs (in fact, dual to them).

Euler's formula

From Euler's formula V - E + F = 2 and 3-valence, 2E = 3V, it follows that F = (V + 4) / 2.

Let p_k denote the number of k-gonal faces (k \geq 5) of P. Then

$$p_5 = 12 + \sum_{k>6} p_k(k-6)$$

Consequently, each bounded right-angled polyhedron has at least 12 pentagonal faces.

A dodecahedron is a bounded right-angled polyhedron with a minimum number of faces (12 pentagons).

Löbell polyhedra

For any $n \ge 5$, there is a right-angled hyperbolic polyhedron L(n) that has (2n+2) faces. L(5) and L (6) look like this.

Polyhedra L(n) is called Löbell polyhedra.

Theorem (A. Yu. Vesnin, 1987)

$$vol(L(n)) = \frac{n}{2} (2\Lambda(\theta_n) + \Lambda\left(\theta_n + \frac{\pi}{n}\right) + + \Lambda\left(\theta_n - \frac{\pi}{n}\right) + \Lambda(\frac{\pi}{2} - 2\theta_n)),$$

where $\theta_n = \frac{\pi}{2} - \arccos(\frac{1}{2\cos\frac{\pi}{n}}).$

Composition / decomposition

Let there be two combinatorial polyhedra $P_1 \bowtie P_2$ with kgonal faces $F_1 \subset P_1 \bowtie F_2 \subset P_2$. Their composition is $P = P_1 \bigcup_{F_1=F_2} P_2$.

If P_1 and P_2 are realized as compact right-angled polyhedra in H^3 , then P is realized as a compact right-angled polyhedron in H^3 .

Edge insertion/ edge deleting

$n_1 - 1$
$n_3 + n_4 - 4$
$n_2 - 1$
R-e

L(6)

L(6)+e

We can get any polyhedron from Löbell polyhedra

Theorem (T. Inoue, 2008)

For any compact right-angled hyperbolc polyhedron P there exists a sequence of unions of right-angled hyperbolic polyhedra P_1, \ldots, P_k such that each set P_i is obtained from P_{i-1} by decomposition or edge surgery, and P_k consists of Löbell polyhedra. Moreover,

 $\operatorname{vol}(P_0) \ge \operatorname{vol}(P_1) \ge \operatorname{vol}(P_2) \ge \dots \ge \operatorname{vol}(P_k).$

Atkinson's volume bounds

Theorem (C. Atkinson, 2009) Let P be a compact right-angled hyperbolic polyhedron with N vertices. Then

$$(N-2)\frac{v_8}{32} \le vol(P) < (N-10)\frac{5v_3}{8}.$$

Constants v_3 and v_8 have a following meaning :

•
$$v_3 = 3\Lambda(\frac{\pi}{3}) = 1.0149416064096535...,$$

• $v_8 = 8\Lambda(\frac{\pi}{4}) = 3.663862376708876....$

Improved upper bound

Theorem (Egorov - Vesnin)

Let P be a compact right-angled hyperbolic polyhedron with N vertices. If P is not a right-angled dodecahedron, then

$$vol(P) < (N - 14) \frac{5v_3}{8}.$$

Informally speaking, large faces reduce the volume

Left: polyhedron with minimal volume Right: polyhedron with maximum volume

Upper bounds considering face sizes

Theorem (Egorov - Vesnin)

Let P be a compact right-angled hyperbolic polyhedron with N \geq 24 vertices. Let F_1 and F_2 be two faces of P such that F_1 is n_1 -gon and F_2 is n_2 -gon. Then

$$vol(P) < (N - n_1 - n_2) \frac{5v_3}{8}$$

Corollary

Let P be a compact right-angled hyperbolic polyhedron with N vertices. Let F_1 , F_2 and F_3 be three faces of P such that F_2 is adjanced to F_1 and F_3 . Suppose that the face F_i is a n_i -gon, i = 1, 2, 3. Then

$$vol(P) < (N - n_1 - n_2 - n_3 + 4) \frac{5v_3}{8}$$

Volumes of compact right-angled polyhedra, Atkinson's lower bound, new upper bound.

Fullerenes

Fullerenes are called trivalent polyhedra, the faces of which are 5 and 6-gons.

Theorem (Došlić, 2005) Every fullerene can be realized as compact right-angled hyperbolic polyhedron.

Ideal right-angled polyhedra

Combinatorial structure

Theorem (I. Rivin, 1992)

A polyhedral graph is realized as a graph of an ideal right-angled polyhedron in H^3 if and only if it is 4-valent and cyclically 6-connected. Moreover, such an realization is unique.

Can be generated using plantri.

Euler's formula

From Euler's formula V - E + F = 2 and 4-valence, 2E = 4V, it follows that F = V + 2.

Let p_k denote the number of k-gonal faces (k \geq 3) of P. Then

$$p_3 = 8 + \sum_{k>4} p_k(k-4)$$

Therefore, each ideal right-angled polyhedron has at least 8 triangular faces.

An octahedron is an ideal right-angled polyhedron with a minimum number of faces (8 triangles).

Aniprisms

Theorem (W. Thurston, 1980) Let $n \ge 3$, then the volume of an ideal rightangled antiprism A(n) is expressed as follows $vol(A(n)) = 2n(\Lambda(\frac{\pi}{4} + \frac{\pi}{2n}) + \Lambda(\frac{\pi}{4} - \frac{\pi}{2n})).$

Edge twisting

Let e_1 and e_2 be two non-adjacent edges that lie on the same face. Edge twisting consists in removing edges e_1 and e_2 , and then, creating a new vertex v and connecting it with edges to the ends of the removed edges

All polyhedra are obtained from A (4))

Theorem (G. Brinkmann, 2000)

Every ideal right-angled hyperbolic polyhedron is either an antiprism or can be obtained from an antiprism by edge twisting operations.

Theorem (N.Yu. Erokhovets, 2019)

Every ideal right-angled hyperbolic polyhedron either an antiprism A (n), $n \ge 3$, or is obtained from A(4) by edge twisting operations.

Atkinson's volume bounds

Theorem (C. Atkinson, 2009)

Let P be an ideal right-angled hyperbolic polyhedron with N vertices. Then

$$(N-2)\frac{v_8}{4} \le vol(P) \le (N-4)\frac{v_8}{2}.$$

Improved upper bound

Theorem (Egorov - Vesnin)

Let P be an ideal right-angled hyperbolic polyhedron with $N \ge 10$ vertices. Then

$$vol(P) < (N - 5)\frac{v_8}{2}.$$

Upper bounds considering face sizes

Theorem (Egorov - Vesnin)

Let P be an ideal right-angled hyperbolic polyhedron with N vertices. Let F_1 and F_2 be two faces of P such that F_1 is n_1 -gon and F_2 is n_2 -gon, n_1 , $n_2 \ge 4$. Then

$$vol(P) < \left(N - \frac{n_1}{2} - \frac{n_2}{2}\right) \frac{v_8}{2}$$

Corollary

Let P be an ideal right-angled hyperbolic polyhedron with N vertices. Let F_1 , F_2 and F_3 be three faces of P such that F_2 is adjanced to F_1 and F_3 . Suppose that the face F_i is a n_i -gon, i = 1, 2, 3. Then

$$vol(P) < (N - n_1 - n_2 - n_3 + 1)\frac{v_8}{2}$$

Thanks for attention!