Integrable geodesic and magnetic geodesic flows on the 2 -torus.

S.V. Agapov

Novosibirsk, Russia, 2020

Poisson bracket and Hamiltonian systems

Let M be a smooth manifold, $\operatorname{dim} M=N$.
Let $f, g \in C^{\infty}(M)$.
In local coordinates $y=\left(y^{1}, \ldots, y^{N}\right)$ on M the Poisson bracket is given by:

$$
h^{i j}(y)=\left\{y^{i}, y^{j}\right\}, \quad\{f, g\}=h^{i j}(y) \frac{\partial f(y)}{\partial y^{i}} \frac{\partial g(y)}{\partial y^{j}}, \quad i, j=1, \ldots, N .
$$

Poisson bracket allows to define a Hamiltonian system on M :

$$
\frac{d}{d t} y^{i}=\left\{y^{i}, H(y)\right\}, \quad i=1, \ldots, N .
$$

Poisson bracket and Hamiltonian systems

In canonical coordinates $\left(y^{1}, \ldots, y^{N}\right)=\left(x^{1}, \ldots, x^{n}, p_{1}, \ldots, p_{n}\right), N=2 n$ we have

$$
\begin{gathered}
\left\{x^{i}, p_{j}\right\}=\delta_{j}^{i}, \quad\left\{x^{i}, x^{j}\right\}=0, \quad\left\{p_{i}, p_{j}\right\}=0, \quad i, j=1, \ldots, n \\
\{F, H\}=\sum_{j=1}^{n}\left(\frac{\partial F}{\partial x^{j}} \frac{\partial H}{\partial p_{j}}-\frac{\partial F}{\partial p_{j}} \frac{\partial H}{\partial x^{j}}\right)
\end{gathered}
$$

Canonical Hamiltonian equations:

$$
\dot{x}^{i}=\frac{\partial H}{\partial p_{i}}, \quad \dot{p}_{i}=-\frac{\partial H}{\partial x^{i}}
$$

The first integrals $F=F(y)$ of this system satisfy the following condition:

$$
\dot{F}=\{F, H\}=0
$$

Integrable geodesic flow on a 2-surface

Let

$$
d s^{2}=g_{i j}(x) d x^{i} d x^{j}, \quad i, j=1,2
$$

be a Riemannian metric on a 2 -surface \mathbb{M}^{2}. The geodesic flow is called integrable if the Hamiltonian system

$$
\dot{x}^{i}=\frac{\partial H}{\partial p_{i}}, \quad \dot{p}_{i}=-\frac{\partial H}{\partial x^{i}}, \quad H=\frac{1}{2} g^{i j} p_{i} p_{j}
$$

possesses an additional first integral $F: T^{*} \mathbb{M}^{2} \rightarrow \mathbb{R}$ such that

$$
\dot{F}=\{F, H\}=\sum_{j=1}^{2}\left(\frac{\partial F}{\partial x^{j}} \frac{\partial H}{\partial p_{j}}-\frac{\partial F}{\partial p_{j}} \frac{\partial H}{\partial x^{j}}\right)=0
$$

and F is functionally independent with H almost everywhere.

Topological obstacles to the complete integrability

Theorem (V.V. Kozlov, 1979)
If a genus of a surface \mathbb{M}^{2} is different from 0 or 1 (that is \mathbb{M}^{2} is homeomorphic neither to a sphere \mathbb{S}^{2} nor to a torus \mathbb{T}^{2}), then the geodesic flow of any analytical Riemannian metric on this surface has no first integral which is analytical on $T^{*} \mathbb{M}^{2}$ and independent on the Hamiltonian.

Polynomial in momenta first integrals

It is known that there exist metrics of two types on the 2-torus with an integrable geodesic flow, namely:

$$
\begin{aligned}
d s^{2}=\Lambda(x)\left(d x^{2}+d y^{2}\right), & F_{1}=p_{2}, \\
d s^{2}=\left(\Lambda_{1}(x)+\Lambda_{2}(y)\right)\left(d x^{2}+d y^{2}\right), & F_{2}=\frac{\Lambda_{2} p_{1}^{2}-\Lambda_{1} p_{2}^{2}}{\Lambda_{1}+\Lambda_{2}} .
\end{aligned}
$$

Conjecture about degrees of polynomial first integrals (V.V. Kozlov). The maximal degree of any irreducible polynomial in momenta first integral of geodesic flow on a surface of genus g seems to be not larger than $4-2 g$.

Cubic first integral

Choose the conformal coordinates (x, y), such that $d s^{2}=\Lambda(x, y)\left(d x^{2}+d y^{2}\right)$.

$$
H=\frac{p_{1}^{2}+p_{2}^{2}}{2 \Lambda}, \quad F=a_{0}(x, y) p_{1}^{3}+a_{1}(x, y) p_{1}^{2} p_{2}+a_{2}(x, y) p_{1} p_{2}^{2}+a_{3}(x, y) p_{2}^{3}
$$

The following relations on the metrics and coefficients of the first integral hold:

$$
a_{2}-a_{0}=c_{0}, \quad a_{3}-a_{1}=c_{1}
$$

where $c_{0}, c_{1} \in \mathbb{R}$ are Kolokoltsov constants; moreover,

$$
\begin{gathered}
a_{1} \Lambda_{y}+2 \Lambda a_{0 x}+3 a_{0} \Lambda_{x}=0, \\
3 a_{1} \Lambda_{y}+2 \Lambda a_{1 y}+\left(1+a_{0}\right) \Lambda_{x}=0 \\
\left(1+a_{0}\right) \Lambda_{y}+\Lambda\left(a_{0 y}+a_{1 x}\right)+a_{1} \Lambda_{x}=0,
\end{gathered}
$$

It can be written in the following form:

$$
\left(\begin{array}{ccc}
3 a_{0} & 2 \Lambda & 0 \\
1+a_{0} & 0 & 0 \\
a_{1} & 0 & \Lambda
\end{array}\right)\left(\begin{array}{c}
\Lambda \\
a_{0} \\
a_{1}
\end{array}\right)_{x}+\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
3 a_{1} & 0 & 2 \Lambda \\
1+a_{0} & \Lambda & 0
\end{array}\right)\left(\begin{array}{c}
\Lambda \\
a_{0} \\
a_{1}
\end{array}\right)_{y}=0 .
$$

Integrable geodesic flow on the 2-torus

Theorem (N.V. Denisova, V.V. Kozlov)
Suppose that the geodesic flow on the 2-torus admits a homogeneous in momenta first integral F_{n} which is independent on the Hamiltonian. Suppose that

1) either F_{n} is even on p_{1}, p_{2}
2) or F_{n} is even on $p_{1}\left(p_{2}\right)$ and odd on $p_{2}\left(p_{1}\right)$,
then there exists an additional polynomial in momenta first integral of degree ≤ 2.

Theorem (N.V. Denisova, V.V. Kozlov) Suppose that the geodesic flow on the 2-torus admits a homogeneous in momenta first integral F_{n} which is independent on the Hamiltonian. The metric $\Lambda(x, y)$ is assumed to be a trigonometric polynomial. Then there exists an additional polynomial in momenta first integral of degree ≤ 2.

Integrable geodesic flow on the 2-torus

Theorem (M. Bialy, A.E. Mironov)
If the Hamiltonian system has an integral F which is a homogeneous polynomial of degree n, then on the covering plane \mathbb{R}^{2} there exist the global semi-geodesic coordinates (t, x) such that

$$
d s^{2}=g^{2}(t, x) d t^{2}+d x^{2}, \quad H=\frac{1}{2}\left(\frac{p_{1}^{2}}{g^{2}}+p_{2}^{2}\right)
$$

and F can be written in the form:

$$
F_{n}=\sum_{k=0}^{n} \frac{a_{k}(t, x)}{g^{n-k}} p_{1}^{n-k} p_{2}^{k}
$$

Here the last two coefficients can be normalized by the following way:

$$
a_{n-1}=g, a_{n}=1
$$

Integrable geodesic flow on the 2-torus

The condition $\{F, H\}=0$ is equivalent to the quasi-linear PDEs

$$
\begin{equation*}
U_{t}+A(U) U_{x}=0, \tag{1}
\end{equation*}
$$

where $U^{T}=\left(a_{0}, \ldots, a_{n-1}\right), a_{n-1}=g$,

$$
A=\left(\begin{array}{cccccc}
0 & 0 & \ldots & 0 & 0 & a_{1} \\
a_{n-1} & 0 & \ldots & 0 & 0 & 2 a_{2}-n a_{0} \\
0 & a_{n-1} & \cdots & 0 & 0 & 3 a_{3}-(n-1) a_{1} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \cdots \\
0 & 0 & \ldots & a_{n-1} & 0 & (n-1) a_{n-1}-3 a_{n-3} \\
0 & 0 & \ldots & 0 & a_{n-1} & n a_{n}-2 a_{n-2}
\end{array}\right)
$$

Quasi-linear system of PDEs

Quasi-linear systems of the form

$$
\begin{gathered}
A(U) U_{x}+B(U) U_{y}=0, \\
U_{t}=A(U) U_{x}, \quad U=\left(u_{1}, \ldots, u_{n}\right)^{T}
\end{gathered}
$$

appears in such areas like

- gas-dynamics
- non-linear elasticity
- integrable geodesic flows on 2-torus
and many others.

Hopf equation (inviscid Burgers' equation)

Consider the following equation $u_{t}+u u_{x}=0$. The solution of the Cauchy problem $\left.u\right|_{t=0}=g(x)$ is given by the implicit formula

$$
u(x, t)=g(x-u t) .
$$

It follows from this formula that the higher any point is placed, the faster it is.

Semi-Hamiltonian systems

Theorem (M. Bialy, A.E. Mironov)
(1) is semi-Hamiltonian system. Namely, there is a regular change of variables

$$
U \mapsto\left(G_{1}(U), \ldots, G_{n}(U)\right)
$$

such that for some $F_{1}(U), \ldots, F_{n}(U)$ the following conservation laws hold:

$$
\left(G_{i}(U)\right)_{x}+\left(F_{i}(U)\right)_{y}=0, \quad i=1, \ldots, n .
$$

Moreover, in the hyperbolic domain, where eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of $A(U)$ are real and pairwise distinct, there exists a change of variables

$$
U \mapsto\left(r_{1}(U), \ldots, r_{n}(U)\right)
$$

such that the system can be written in Riemannian invariants:

$$
\left(r_{i}\right)_{x}+\lambda_{i}(r)\left(r_{i}\right)_{y}=0, \quad i=1, \ldots, n .
$$

S.P. Tsarev: the generalized hodograph method.

Polynomial integrals of the geodesic flow on a 2-surface

Theorem (G. Abdikalikova, A.E. Mironov)
On a 2-surface introduce the coordinates $d s^{2}=g^{2}(t, x) d t^{2}+d x^{2}$. The Hamiltonian takes the form $H=\frac{1}{2}\left(\frac{p_{1}^{2}}{g^{2}}+p_{2}^{2}\right)$. The corresponding geodesic flow has a local polynomial in momenta first integral of the fourth degree:

$$
F_{4}=\frac{a_{0}}{g^{4}} p_{1}^{4}+\frac{a_{1}}{g^{3}} p_{1}^{3} p_{2}+\frac{a_{2}}{g^{2}} p_{1}^{2} p_{2}^{2}+p_{1} p_{2}^{3}+p_{2}^{4} .
$$

Here

$$
\begin{gathered}
a_{0}(t, x)=\frac{3\left(c_{2}+t+3 c_{3}^{2}\right)}{5 c_{3}^{2}}, \quad a_{2}(t, x)=-\frac{6\left(2 c_{2}+2 t+c_{3}^{2}\right)}{5 c_{3}^{2}}, \\
a_{1}(t, x)=-\frac{3 \sqrt{c_{3}^{2}\left(-5 c_{1}-4\left(3 c_{2}+8 t\right)-18 c_{3}^{2}+5 x\right)-12\left(c_{2}+t\right)^{2}}}{5 c_{3}^{2}}, \\
g(t, x)=\frac{2 \sqrt{c_{3}^{2}\left(-5 c_{1}-4\left(3 c_{2}+8 t\right)-18 c_{3}^{2}+5 x\right)-12\left(c_{2}+t\right)^{2}}}{5 c_{3}^{2}},
\end{gathered}
$$

where c_{1}, c_{2}, c_{3} are arbitrary constants.

Magnetic geodesic flow (systems with gyroscopic forces)

$$
\frac{d}{d t} y^{i}=\left\{y^{i}, H(y)\right\}_{m g}, \quad i=1, \ldots, N
$$

In coordinates $\left(y^{1}, \ldots, y^{N}\right)=\left(x^{1}, \ldots, x^{n}, p_{1}, \ldots, p_{n}\right), N=2 n$ magnetic Poisson bracket is given by

$$
\left\{x^{i}, p_{j}\right\}_{m g}=\delta_{j}^{i}, \quad\left\{x^{i}, x^{j}\right\}_{m g}=0, \quad\left\{p_{i}, p_{j}\right\}_{m g}=\Omega_{i j}(x)
$$

Consider a Hamiltonian system

$$
\dot{x}^{j}=\left\{x^{j}, H\right\}_{m g}, \quad \dot{p}_{j}=\left\{p_{j}, H\right\}_{m g}, \quad j=1,2
$$

on the 2 -torus in presence of a magnetic field with $H=\frac{1}{2} g^{i j} p_{i} p_{j}$ and the Poisson bracket:

$$
\{F, H\}_{m g}=\sum_{i=1}^{2}\left(\frac{\partial F}{\partial x^{i}} \frac{\partial H}{\partial p_{i}}-\frac{\partial F}{\partial p_{i}} \frac{\partial H}{\partial x^{i}}\right)+\Omega\left(x^{1}, x^{2}\right)\left(\frac{\partial F}{\partial p_{1}} \frac{\partial H}{\partial p_{2}}-\frac{\partial F}{\partial p_{2}} \frac{\partial H}{\partial p_{1}}\right)
$$

The only known examples of integrable geodesic flows on the 2-torus on all energy levels

Integrable geodesic flow

$$
\begin{aligned}
d s^{2}=\Lambda(y)\left(d x^{2}+d y^{2}\right), & F_{1}=p_{1} \\
d s^{2}=\left(\Lambda_{1}(x)+\Lambda_{2}(y)\right)\left(d x^{2}+d y^{2}\right), & F_{2}=\frac{\Lambda_{2} p_{1}^{2}-\Lambda_{1} p_{2}^{2}}{\Lambda_{1}+\Lambda_{2}}
\end{aligned}
$$

Integrable magnetic geodesic flow

$$
\begin{gathered}
d s^{2}=d x^{2}+d y^{2}, \quad \omega=B d x \wedge d y, \quad B=\text { const } \neq 0, \quad F_{1}=\cos \left(\frac{p_{1}}{B}-y\right) \\
d s^{2}=\Lambda(y)\left(d x^{2}+d y^{2}\right), \quad \omega=-u^{\prime}(y) d x \wedge d y, \quad F_{1}=p_{1}+u(y)
\end{gathered}
$$

Magnetic geodesic flow and its integrability

Theorem (S.V. Bolotin, V.V. Ten)
Let $H=\frac{p_{1}^{2}+p_{2}^{2}}{2}$ and the magnetic form $\omega=\lambda(x, y) d x \wedge d y$. The magnetic geodesic flow possesses an additional polynomial first integral iff the Fourier spectrum of $\lambda(x, y)$ lies on a straight line going through the origin and the average of $\lambda(x, y)$ over the whole torus is equal to 0 .

Consequence (S.V. Bolotin, V.V. Ten)
The degree of any irreducible polynomial first integral of such magnetic geodesic flow is equal to 1 .

Quadratic first integrals on several energy levels

$$
H=\frac{p_{1}^{2}+p_{2}^{2}}{2 \Lambda\left(x^{1}, x^{2}\right)}, \quad \dot{x}^{j}=\left\{x^{j}, H\right\}_{m g}, \quad \dot{p}_{j}=\left\{p_{j}, H\right\}_{m g}, \quad j=1,2 .
$$

Theorem (A., Bialy, Mironov, 2017)
Consider the magnetic flow of the Riemannian metric $d s^{2}=\Lambda(x, y)\left(d x^{2}+d y^{2}\right)$ with the non-zero magnetic form ω. Suppose the magnetic flow admits a first integral F_{2} on all energy levels such that F_{2} is quadratic in momenta. Then in some coordinates we have

$$
d s^{2}=\Lambda(y)\left(d x^{2}+d y^{2}\right), \quad \omega=-u^{\prime}(y) d x \wedge d y
$$

so there exists another integral F_{1} which is linear in momenta: $F_{1}=p_{1}+u(y)$, and F_{2} can be written as a combination of H and F_{1}.
I.A. Taimanov: There is no additional irreducible quadratic first integral with analytic periodic coefficients even on 2 different energy levels!

Integrals of higher degrees on several energy levels

Lemma (A., Valyuzhenich, 2019) Suppose that the geodesic flow on the 2-torus in a non-zero magnetic field admits an additional polynomial in momenta first integral F of an arbitrary degree N on $N+2$ different energy levels $\left\{H=E_{1}\right\},\left\{H=E_{2}\right\} \ldots$ Then F is the first integral of the same flow on all energy levels.

Theorem (A., Valyuzhenich, 2019) Suppose that the geodesic flow on the 2-torus in a non-zero magnetic field admits an additional polynomial in momenta first integral F of an arbitrary degree N with analytic periodic coefficients on $N+2$ different energy levels $\left\{H=E_{1}\right\},\left\{H=E_{2}\right\} \ldots$. Then the magnetic field and the metric are functions of one variable and there exists a linear in momenta first integral F_{1} on all energy levels.
S. Agapov, A. Valyuzhenich, "Polynomial integrals of magnetic geodesic flows on the 2-torus on several energy levels", Disc. Cont. Dyn. Syst. - A, 39:11 (2019), 6565-6583.
S. Agapov, "On first integrals of two-dimensional geodesic flows", Sib. Math. Journ., 61:4 (2020), 563-574.

Certain generalizations

Lemma Suppose that the geodesic flow of the metric $d s^{2}=\Lambda(x, y)\left(d x^{2}+d y^{2}\right)$ on a 2-surface admits a rational in momenta first integral

$$
F=\frac{\sum_{k=0}^{M} a_{k}(x, y) p_{1}^{M-k} p_{2}^{k}}{\sum_{s=0}^{N} b_{s}(x, y) p_{1}^{N-s} p_{2}^{s}}
$$

with analytic coefficients $a_{k}(x, y), b_{s}(x, y)$. Denote

$$
\begin{array}{cl}
f_{1}=a_{0}-a_{2}+a_{4}-\ldots, & g_{1}=a_{1}-a_{3}+a_{5}-\ldots, \\
f_{2}=b_{0}-b_{2}+b_{4}-\ldots, & g_{2}=b_{1}-b_{3}+b_{5}-\ldots,
\end{array}
$$

here $a_{k}=0$ while $k>M, b_{s}=0$ while $s>N$. Then

$$
\left(\frac{f_{1}-i g_{1}}{f_{2}-i g_{2}}\right)_{x}-i\left(\frac{f_{1}-i g_{1}}{f_{2}-i g_{2}}\right)_{y}=0
$$

S. Agapov, "On first integrals of two-dimensional geodesic flows", Sib. Math. Journ., 61:4 (2020), 563-574.

Certain generalizations (toward rational integrals)

Theorem Suppose that the geodesic flow of the metric $d s^{2}=\Lambda(x, y)\left(d x^{2}+d y^{2}\right)$ on the 2 -torus admits a rational in momenta first integral

$$
F=\frac{a_{0}(x, y) p_{1}+a_{1}(x, y) p_{2}}{b_{0}(x, y) p_{1}+b_{1}(x, y) p_{2}}
$$

All the coefficients $a_{k}(x, y), b_{s}(x, y)$ are assumed to be analytic periodic in both variables functions. Also assume that at least one of them does not vanish anywhere. Then $\Lambda(x, y)$ is a constant.
S. Agapov, "On first integrals of two-dimensional geodesic flows", Sib. Math. Journ., 61:4 (2020), 563-574.

Certain generalizations (toward rational integrals)

Lemma Suppose that the magnetic geodesic flow on the 2-torus admits a rational in momenta first integral $F=\frac{Q_{N}}{R_{M}}$ on $\frac{N+M+1}{2}$ or $\frac{N+M+2}{2}$ (depending on the parity $N+M)$ pairwise distinct energy levels $\left\{H=C_{1}\right\},\left\{H=C_{2}\right\}, \ldots$. Here Q_{N}, R_{M} are inhomogeneous polynomials in momenta of degrees N and M accordingly, $C_{j}>0$ for any j. Then F is the first integral of the same flow on all energy levels simultaneously.
S. Agapov, "On first integrals of two-dimensional geodesic flows', Sib. Math. Journ., 61:4 (2020), 563-574.

Certain generalizations (toward rational integrals)

Theorem Suppose that the magnetic geodesic flow of the metric $d s^{2}=\Lambda(x, y)\left(d x^{2}+d y^{2}\right)$ on the 2-torus in a non-zero magnetic field admits a rational in momenta first integral

$$
F=\frac{a_{0}(x, y) p_{1}+a_{1}(x, y) p_{2}+g(x, y)}{b_{0}(x, y) p_{1}+b_{1}(x, y) p_{2}+h(x, y)}
$$

on at least two distinct energy levels. All the coefficients $a_{k}(x, y), b_{s}(x, y)$ are assumed to be analytic periodic in both variables functions. Also assume that at least one of them does not vanish anywhere. Then there exist a linear in momenta first integral on all energy levels simultaneously.
S. Agapov, "On first integrals of two-dimensional geodesic flows", Sib. Math. Journ., 61:4 (2020), 563-574.

Quadratic first integrals on a fixed energy levels

For a Riemannian metric $d s^{2}=\Lambda(x, y)\left(d x^{2}+d y^{2}\right)$ and quadratic in momenta first integral on the 2-torus on a fixed energy level we obtain the following system

$$
A(U) U_{x}+B(U) U_{y}=0
$$

where

$$
A=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
f & 0 & \Lambda & 0 \\
2 & 1 & 0 & \frac{g}{2} \\
0 & 0 & 0 & -\frac{f}{2}
\end{array}\right), \quad B=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
-g & 0 & 0 & -\Lambda \\
0 & 0 & -\frac{g}{2} & 0 \\
2 & -1 & \frac{f}{2} & 0
\end{array}\right), \quad U=\left(\begin{array}{c}
\Lambda \\
u_{0} \\
f \\
g
\end{array}\right) .
$$

Magnetic field has the form:

$$
\Omega=\frac{1}{4}\left(g_{x}-f_{y}\right) .
$$

M. Bialy, A.E. Mironov: This system is proved to be semi-Hamiltonian.

The only known explicit non-trivial solution

Dorizzi B., Grammaticos B., Ramani A. and Winternitz P.:

$$
\begin{gathered}
A(U) U_{x}+B(U) U_{y}=0, \quad U=\left(\Lambda, u_{0}, f, g\right)^{T}, \quad \Omega=\frac{1}{4}\left(g_{x}-f_{y}\right) . \\
A=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
f & 0 & \Lambda & 0 \\
2 & 1 & 0 & \frac{g}{2} \\
0 & 0 & 0 & -\frac{f}{2}
\end{array}\right), \quad B=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
-g & 0 & 0 & -\Lambda \\
0 & 0 & -\frac{g}{2} & 0 \\
2 & -1 & \frac{f}{2} & 0
\end{array}\right) .
\end{gathered}
$$

Explicit solution:

$$
U_{0}(x, y)=\left(\begin{array}{c}
\Lambda(x, y) \\
u_{0}(x, y) \\
f(x, y) \\
g(x, y)
\end{array}\right)=\left(\begin{array}{c}
2 E-2 h(x, y) \\
-8 q(x, y)-4(E-h(x, y)) \\
-4 R^{\prime}(y) \\
4 S^{\prime}(x)
\end{array}\right), \quad \Omega=S^{\prime \prime}(x)+R^{\prime \prime}(y)
$$

$h(x, y)=\frac{1}{2}\left(S^{\prime}\right)^{2}+\frac{1}{2}\left(R^{\prime}\right)^{2}+S R^{\prime \prime}+R S^{\prime \prime}+\mu_{1}-\mu_{2}, \quad q(x, y)=\frac{1}{2}\left(S^{\prime}\right)^{2}+S R^{\prime \prime}+\mu_{2}$,
here $\mu_{1}(x, y)=\left(S^{\prime}\right)^{2}+\frac{1}{2} \beta_{2} S^{2}-\beta_{3} S, \quad \mu_{2}(x, y)=-\left(R^{\prime}\right)^{2}-\frac{1}{2} \beta_{1} R^{2}-\beta_{3} R$ and

$$
S^{\prime \prime}=\alpha S^{2}+\beta_{1} S+\gamma_{1}, \quad R^{\prime \prime}=-\alpha R^{2}+\beta_{2} R+\gamma_{2}
$$

Quadratic first integrals on a fixed energy level

Theorem (A., Bialy, Mironov, 2017)
There exist real analytic Riemannian metrics on the 2-torus which are arbitrary close to the Liouville metrics (and different from them) and a non-zero analytic magnetic fields such that magnetic geodesic flows on the energy level $\left\{H=\frac{1}{2}\right\}$ have polynomial in momenta first integral of degree two.

Toward the search for first integrals of higher degrees on a fixed energy level

H.M. Yehia, "On certain two-dimensional conservative mechanical systems with a cubic second integral', Journ. of Phys. A, 35 (2002), 9469-9487.
A.A. Elmandouh, H.M. Yehia, "New integrable systems with a quartic integral and new generalizations of Kovalevskaya's and Goriatchev's cases', Reg. Chaot. Dyn, 13:1 (2008), 57-69.
A.A. Elmandouh, " New integrable problems in the dynamics of particle and rigid body", Acta Mech., 226 (2015), 3749-3762.
A.A. Elmandouh, H.M. Yehia, "Integrable 2D time-irreversible systems with a cubic second integral', Advances in Math. Phys., 2016 (2016), 10 pp.
A.A. Elmandouh, "New integrable problems in a rigid body dynamics with cubic integral in velocities", Results in Physics, 8 (2018), 559-568.

Thank you for your attention!

