# Algorithm for consturcting a rectangular diagram of the Seifert surface

### Misha Chernavskikh, MSU

8th Chinese-Russian Conference on Knot Theory and Related Topics

December 25, 2021

## Defintions

## Definition

Rectangular diagram of a link — set of vertices R in  $\mathbb{T}^2$ , such that any parallel  $\mathbb{S}^1 \times \{\varphi\}$  and meridian  $\{\theta\} \times \mathbb{S}^1$  consist only 0 or 2 vertices.

Figure: Rectangular diagram of trefoil



## Definition

A rectangle in the 2-torus  $\mathbb{T}^2$  is a subset of form  $[\theta_1; \theta_2] \times [\varphi_1; \varphi_2]$ , where  $\theta_1 \neq \theta_2, \varphi_1 \neq \varphi_2, \ \theta_1, \theta_2, \varphi_1, \varphi_2 \in \mathbb{S}^1$ .



Figure: Recntangles

### Definition

Two rectangles r and  $\tilde{r}$  are said to be compatible, if their intersection  $r \cap \tilde{r}$  satisfies one of the following:

- 1.  $r_1 \cap r_2$  is empty;
- 2.  $r_1 \cap r_2$  is a subsest of vertices of  $r_1$ ;
- 3.  $r_1 \cap r_2$  is a rectangle disjoint from the vertices of both rectangles  $r_1$  and  $r_2$ .



Figure: Compatible rectangles.

#### Definition (Dynnikov–Prasolov)

Rectangular diagram of surface is a collection  $\Pi = \{r_1, \ldots, r_k\}$  of pairwise compatible rectagnles in  $\mathbb{T}^2$ , that free vertices of rectagnles is a rectangle diagram of a link.

#### Definition

Boundary of a rectangle diagram of a surface — set of free vertices of  $\Pi$  and will be denoted as  $\partial \Pi$ .

## Rectangular diagram of Seifert surface for the trefoil.



## Theorem (C.2020)

There exists an algorithm, which for any oriented diagram of a link R with complexity m, produce oriented diagram  $\Pi$  of Seifert surface with complexity less than  $2m^4$ . Moreover,  $\partial \Pi$  is obtained from R by using less than  $\frac{m^2}{2}$  stabilizations.









## Splitting into Seifert circles.



## Definition

We call Seifert circle winding, if there are no

- 1. pieces like on the Figure;
- 2. non-neighbor vertical edges on any meridian.

Figure: Forbidden pieces.



## Forbidden pieces



#### Definition

Stabilization — replacement one rectangular diagram of a link R to another R', such |R'| = |R| + 2 and symmetric difference  $R \triangle R'$  has the form  $(\theta_i, \varphi_j)$ , i, j = 1, 2, and rectangle  $[\theta_1; \theta_2] \times [\varphi_1; \varphi_2]$ ,  $\theta_1 < \theta_2$ ,  $\varphi_1 < \varphi_2$  does not contain any other vertices of R, R'.







Figure: Applying stabilizations.

Figure: Removing forbidden pieces.



We construct sets  $\Pi_k$  of rectangles with the following properties:

- 1.  $\partial \Pi_i = V(C_i)$
- 2. For any  $k \in \{1, ..., n\}$  all rectangles of the union  $\bigcup_{i \leq k} \prod_i$  are pairwise compatible.

Renumber Seifert circles  $C_1, \ldots, C_n$  so that for any i < k satisfies  $D_k \not\subset D_i$ . Let

$$\varepsilon_k = \frac{k}{2(n+1)}$$







Algorithm



Algorithm



Algorithm at work.



Algorithm at work.









## Questions