Sequence of virtual link invariants arising from flat links

Maxim Ivanov

Novosibirsk State University

VIII Russian-Chinese Conference on Knot Theory and Related Topics

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Virtual knots are virtual diagrams modulo generalized Reidemeister moves.

Figure: Classical Reidemeister moves

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Virtual knots are virtual diagrams modulo generalized Reidemeister moves.

Figure: Virtual Reidemeister moves

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Flat knots are flat diagrams modulo virtual Reidemeister moves and flat Reidemeister moves.

Figure: Flat Reidemeister moves

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Flat knots may also be considered as virtual knots modulo crossing change operation.

Figure: Crossing change operation

To define F–polynomials we assign to each classical crossing the following weights: sgn(c), Ind(c) and $\nabla J_n(D_c)$.

Sign of a crossing $sgn(c)$ is defined by

Figure: Sign of a classical crossing

To define an index of a crossing $Ind(c)$ assign an integer value to each arc in a way satisfying the rule below

Figure: Cheng coloring

KORK ERKER ADA ADA KORA

Such integer labeling, called a Cheng coloring, always exists for an oriented virtual knot diagram.

Figure: Cheng coloring

Using this coloring Z. Cheng and H. Gao assigned an integer value $Ind(c)$ to each classical crossing c of a virtual knot diagram

$$
\mathsf{Ind}(c) = \mathsf{sgn}(c)(a - b - 1)
$$

S. Satoh and K. Taniguchi introduced another invariant of virtual knots the n-th writhe $J_n(D)$. For each $n \in \mathbb{Z} \setminus \{0\}$ the *n*-th writhe of an oriented virtual link diagram D is defined as

$$
J_n(D) = \sum_{\text{Ind}(c) = n} \text{sgn}(c)
$$

K. Kaur, M. Prabhakar and A. Vesnin defined n-th dwrithe of D, denoted by $J_n(D)$

$$
\nabla J_n(D) = J_n(D) - J_{-n}(D)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

 $\nabla J_n(D)$ is a flat virtual knot invariant.

For every classical crossing c of D we consider a diagram D_c , obtained by smoothing crossing c against orientation.

Figure: Smoothing against orientation

Flat knots $[D_c]$ corresponding to D_c satisfy following properties:

- For a crossing c involved in RI $[D_c] = [D^{\pm}]$.
- \bullet Two crossings involved in RII have the same $[D_c]$.
- For crossings involved in RIII and SV $[D_c]$ are preserved.
- \bullet [D_c] of the crossing is preserved under Reidemeister moves and crossing change operation if it isn't involved in it.

These properties allowed K. Kaur, M. Prabhakar and A. Vesnin to construct a family of polynomial invariants, called F–polynomials using $\nabla J_n(D_c)$ as a weight. These invariants are defined by

$$
F_K^n(t,\ell) = \sum_{c \in C(D)} \text{sgn}(c) t^{\text{Ind}(c)} \ell^{\nabla J_n(D_c)}
$$

$$
- \sum_{c \in T_n(D)} \text{sgn}(c) \ell^{\nabla J_n(D_c)} - \sum_{c \notin T_n(D)} \text{sgn}(c) \ell^{\nabla J_n(D)},
$$
where $T_n(D)$, $\{0 \leq C(D) \} \cup \{T_n(D)\} \cup \{T_n(D)\} \cup \{T_n(D)\}$

where $T_n(D) = \{c \in C(D) : |\nabla J_n(D_c)| = |\nabla J_n(D)|\}$

KO K K Ø K K E K K E K V K K K K K K K K K

Definition

Let G be an abelian group and $w: C(D) \rightarrow G$ be a function which assigns a value $w(c) \in G$ to a classical crossing $c \in C(D)$ for all diagrams $D \in \mathcal{D}$. Function w is said to be a weight function, write $w \in W_G$, if it satisfies weight function conditions (C1)–(C3)

 $(C1)$ w is local, i.e. if D' is obtained from D by a generalized Reidemeister move such that a crossing $c \in D$ is not involved in this move and $c' \in D'$ is the corresponding crossing, then $w(c') = w(c)$; $(C2)$ if diagram D' is obtained from D by RIII-move and involved classical crossings a, b, $c \in D$ have weights $w(a)$, $w(b)$ and $w(c)$, as well as involved crossings of a', b', $c' \in D'$ have weights $w(a')$, $w(b')$ and $w(c')$, then $w(a') = w(a)$, $w(b') = w(b)$ and $w(c') = w(c)$. $a \vee b$ c \longleftrightarrow b' $\Bigg\}$ a b' \angle a' \overline{a} c $\overline{}$

Figure: RIII move.

 $(C3)$ if diagram D' is obtained from D by SV-move and involved classical crossing $c \in D$ has weight $w(c)$, as well as involved classical crossing $c' \in D'$ has weight $w'(c')$, then $w'(c') = w(c)$.

Figure: SV move.

Definition

Let w be a weight function, a digram D' is obtained from D by RII-move and α , β are crossings involved. If $w(\beta) = -w(\alpha)$, then we say that w is an odd weight function and write $w\in W_G^{odd}$. If $w(\beta)=w(\alpha),$ then we say that w is an even weight function and write $w \in W_G^{even}$.

Figure: Even and odd weight functions on RII crossings.

KORKAR KERKER SAGA

An even weight function such that for every crossing obtained by RI–move its value is fixed is a Chord Index introduced by Cheng.

Definition

A subset $C'(\mathcal{D})\subset\mathcal{C}(\mathcal{D})$ is said to be *consistent* if the characteristic function $1_{C^{\prime}(\mathcal{D})}:\mathcal{C}(\mathcal{D})\to\{0,1\}\subset\mathbb{Z}$ of the set $C^{\prime}(\mathcal{D})$ is an even weight function.

Definition

Let $C'(\mathcal{D})\subset C(\mathcal{D})$ be consistent. Then $w':C'(\mathcal{D})\to G$ is said to be a weight function defined for $C'(D)$ if w' satisfies weight function conditions (C1) - (C3) for all crossings in $C'(\mathcal{D})$.

If $C'(\mathcal{D}) \subset C(\mathcal{D})$ is consistent, and $w' : C'(\mathcal{D}) \to G$ is a weight function, then w' can be extended to $w:\mathcal{C}(\mathcal{D})\to \mathcal{G}$ by defining

$$
w(c) = \begin{cases} w'(c), & c \in C'(\mathcal{D}), \\ 0, & \text{otherwise.} \end{cases}
$$

Let $\mathcal{D}(L)$ be the set of all diagrams of an ordered oriented virtual link L, For a diagram $D \in \mathcal{D}(L)$ denote by $R(w, D)$ the set of values $w(c)$, where c is a classical crossing in D that may be reduced by a single RI-move. Then take a union over all diagrams of L :

$$
R(w, L) = \bigcup_{D \in \mathcal{D}(L)} R(w, D).
$$

Suppose there are two weights $v\in W^{odd}_{G_1}$ and $w\in W^{even}_{G_2}$. Take $g\in G_2$ such that either $g \notin R(w, L)$ or $R(v, L) = \{0\}$. Then *I*-function is defined by

$$
I(D; v, w, g) = \sum_{w(c)=g} v(c).
$$

KORKAR KERKER ST VOOR

Assume that our weight functions are local with respect to crossing change operation. Then to every weight function $w:\mathcal{C}'(\mathcal{D})\to \mathcal{G}$ we can associate a weight function $w^*:C'({\cal D})\to G$ induced by taking a mirror image, i.e. $w^*(c) = w(c^*)$. We define a flat *I*-function by

$$
I_f(D; v, w, g) = \sum_{w(c)=g} v(c) + \sum_{w^*(c)=g} v^*(c).
$$

Theorem

 $I(D; v, w, g)$ is an ordered oriented virtual link invariant, $I_f(D; v, w, g)$ is an ordered oriented flat virtual link invariant.

Applying the type-1 smoothing to a classical crossing $c \in D$, which belongs to a single component, we obtain a link diagram with one less classical crossing and the same number of components.

Figure: Type-1 smoothing.

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 2990

Consider a diagram of an $(n - 1)$ -component ordered oriented virtual link. Applying the type-2 smoothing to a classical crossing c such that two meeting arcs belong to the i-th component we obtain a diagram of an ordered n-component link.

Figure: Type-2 smoothing. .

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Consider a diagram of an n-component ordered oriented virtual link, and assume that crossing c belong to components n and $(n - 1)$. Then after type-3 smoothing we will get a diagram of an $(n - 1)$ -component ordered link.

Figure: Type-3 smoothing.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 2990

Þ

Let us denote by $V\mathcal{L}_{\text{flat}}$ a free Z-module generated by ordered oriented flat virtual links. For a virtual link diagram D denote by $[D]$ a flat virtual link whose diagram is obtained from D by replacing all classical crossings by flat crossings, then $[D] \in \mathcal{VL}_{\text{flat}}$.

Theorem

Functions Sⁱ defined as

 $S_1(c) = [D_c],$ $S_2(c) = [D^c],$ and $S_3(c) = [^cD],$

KORKARYKERKER POLO

are even weight functions taking values in VC_{flat} .

Corollary

Functions B^i and B^i_{flat} defined by

$$
B^{i} = \sum_{c \in C_{i}(D), \ [D^{c}] \neq [D \sqcup O]} \text{sgn}(c)[K^{c}],
$$

$$
B_{\text{flat}}^{i} = \sum_{c \in C_{i}(D), \ [D^{c}] \neq [D \sqcup O]} \text{sgn}(c)[K^{c}] - [K^{c^{*}}]),
$$

are virtual link and flat virtual link invariants. $C_i(D)$ are crossings c s.t. both arcs belong to the i-th component of a link.

These new invariants appear to be useful studying connected sums of virtual knots. As an example we give a new proof of Kishino knot being nontrivial.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Let K be a Kishino knot. We will show that $B^1(K)\neq 0$, hence K is distinguished from the unknot by B^1 .

Figure: Kishino knot.

To calculate $B^1(K)$ we find signs of all crossings

 $sgn(a) = sgn(d) = -1$ and $sgn(b) = sgn(c) = 1$.

Figure: Kishino knot.

$$
B^{1}(K) = -[K^{a}] + [K^{b}] + [K^{c}] - [K^{d}].
$$

Each smoothing provide an ordered oriented 2-component virtual link. One can check, that

$$
[K^a] = [K^d] \quad \text{and} \quad [K^b] = [K^c],
$$

KORK STRAIN A STRAIN A COMP

so we only need to prove that $[K^a]$ and $[K^b]$ are distinct.

Figure: Diagrams of $K_1 = K^a$ and $K_2 = K^b$.

To simplify the notation we denote K^a as K_1 and K^b as K_2 . The only crossings corresponding to 2-nd component of K_1 are c and d and there are no such crossings in $K₂$. Hence

$$
B_{\text{flat}}^2(K_1) = [K_1^c] - [K_1^{c^*}] - [K_1^d] + [K_1^{d^*}] \text{ and } B_{\text{flat}}^2(K_2) = 0,
$$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 2990

Figure: Diagrams of K_1^c and K_1^d .

Note that in K_1^c and in $K_1^{d^*}$ the 3-rd component is nontrivially linked with two other components, but for $K_1^{c^*}$ and K_1^d it is not true.

Figure: Diagrams of $K_1^{c^*}$ and $K_1^{d^*}$.

$$
\mathcal{B}^2_{\text{flat}}(\mathcal{K}_1) = [\mathcal{K}_1^c] - [\mathcal{K}_1^{c^*}] - [\mathcal{K}_1^d] + [\mathcal{K}_1^{d^*}]
$$

Since

$$
[K_1^c] \neq [K_1^{c^*}], [K_1^d], \quad \text{ and } \quad [K_1^{d^*}] \neq [K_1^{c^*}], [K_1^d]
$$

there are no cancelations and $\mathcal{B}^2_{\text{flat}}(\mathcal{K}_1) \neq 0$. Therefore Kishino knot is not equivalent to the unknot.

Now we define a recursive procedure to define virtual link invariants.

- Take an invariant of ordered oriented flat virtual links A_1 taking values in a group G.
- Take an even weight function $F_1\in\mathcal{W}_{\mathcal{V}\mathcal{L}_{\text{flat}}}^{\text{even}}$
- Take a couple of weight functions $w_1 \in W_{H_1}^{\text{even}}$ and $u_1 \in W_{\mathbb{Z}}^{\text{odd}}$

The invariant may be extended to a homomorphism $A_1 : \mathcal{VL}_{\text{flat}} \to G$, hence, its composition with F_1 defines a weight function $A_1 \circ F_1 \in W_G^{even}$.

$$
v_1 = u_1 * (A_1 \circ F_1)
$$

$$
I(D; v_1, w_1, h_1) = \sum_{w_1(c) = h_1} v_1(c)
$$

$$
I_f(D; v_1, w_1, h_1) = \sum_{w_1(c) = h_1} v_1(c) + \sum_{w_1(c^*) = h_1} v_1(c^*),
$$

We continue the procedure by taking on each step some weight functions

$$
u_i \in W_G^{odd}, \ F_i \in W_{\mathcal{VL}_{\text{flat}}}^{even}, \ w_i \in W_{H_i}^{even}.
$$

We get a family of ordered oriented flat virtual link invariants A_i defined by

$$
A_i(D) = I_f(D; v_{i-1}, w_{i-1}, h_{i-1}), \quad \text{for} \quad i > 1,
$$

where

$$
v_{i-1} = u_{i-1} * (A_{i-1} \circ F_{i-1}).
$$

KO K K Ø K K E K K E K V K K K K K K K K K

To make this procedure correct we require $R(u_i,D)=\{0\}$ for all $D.$

We continue the procedure by taking on each step some weight functions

$$
u_i \in W_G^{odd}, \ F_i \in W_{\mathcal{VL}_{\text{flat}}}^{even}, \ w_i \in W_{H_i}^{even}.
$$

We get a family of ordered oriented flat virtual link invariants A_i defined by

$$
A_i(D) = I_f(D; v_{i-1}, w_{i-1}, h_{i-1}), \quad \text{for} \quad i > 1,
$$

where

$$
v_{i-1} = u_{i-1} * (A_{i-1} \circ F_{i-1}).
$$

To make this procedure correct we require $R(u_i,D)=\{0\}$ for all $D.$

Corollary

Given three weight functions $u \in W_H^{odd}$, $w \in W_G^{even}$ and $F \in W_{V\mathcal{L}_{flat}}^{even}$ such that $R(u, L) = \{0\}$ for all links L and a sequence $\{g_i \in G\}_{i \in \mathbb{N}}$ there is an infinite sequence of weight functions $\{v_i\}_{i\in\mathbb{N}}$ and corresponding invariants generated by them.

Theorem

Let $S = \{s_1, \ldots, s_k\}$ be a finite set of weight functions where $s_i = A_{m_i} \circ F_{m_i}$ for some $m_i \in \mathbb{N}$, $w \in W_{\mathbb{Z}}^{odd}$ and $v \in W_{\mathbb{Z}}^{even}$ such that $R(v, D) = \{0\}$ for all D. Then

$$
F(t,\ell_1,\ldots,\ell_k) = \sum_{c \in C(D)} w(c) t^{v(c)} \ell_1^{s_1(c)} \cdots \ell_k^{s_k(c)} - \sum_{c \in T(D)} w(c) \ell_1^{s_1(c)} \cdots \ell_k^{s_k(c)} - \sum_{c \notin T(D)} w(c) \ell_1^{s_1(c)} \cdots \ell_k^{s_k(c)}
$$

is a link invariant, where $\mathcal{T}(D)=\{c\in\mathcal{C}(D)\mid s_i(c)\in R(s_i,L)$ for all i $\}.$

Example

Let $v = \text{Ind}$, $w = \text{sgn}$, $A_1 = \nabla J_n$ and $s_1 = \nabla J_n(D_c) = A_1 \circ F_1$, where F_1 is a type-1 smoothing. Then $F(t, \ell_1)$ coincide with *n*-th F-polynomial.

KORKAR KERKER ST VOOR

Take F_1 to be a type-1 smoothing, and let $F_i = F_1$ for $i \ge 2$. Define $A_1 = I_f(D; \text{sgn}, \text{Ind}, n) = \nabla J_n$. By taking $u_i = \text{sgn} * \text{Ind}$ for $i \ge 1$ we define $\nabla J_{n,m}(D)$

$$
\nabla J_{n,m}(D) = A_2(D) = I_f(D; u_2 * (A_1 \circ F_1), w_1, m) =
$$
\n
$$
= \sum_{\text{Ind}(c)=m} \text{sgn}(c) \text{Ind}(c) \nabla J_n(D_c) - \sum_{\text{Ind}(c)=-m} \text{sgn}(c) \text{Ind}(c) \nabla J_n(D_c)
$$
\n
$$
= \sum_{\text{Ind}(c)=[m]} \text{Ind}(c) \text{sgn}(c) \nabla J_n(D_c).
$$

KORK STRAIN A STRAIN A COMP

Proposition¹

A family of F^{n,m,k}-polynomials is an oriented virtual knot invariant.

$$
F_D^{n,m,k}(t,\ell_1,\ell_2) = \sum_{c \in C(D)} \text{sgn}(c) t^{\text{Ind}(c)} \ell_1^{\nabla J_n(D_c)} \ell_2^{\nabla J_{m,k}(D_c)}
$$

$$
- \sum_{c \in T(D)} \text{sgn}(c) \ell_1^{\nabla J_n(D_c)} \ell_2^{\nabla J_{m,k}(D_c)} - \sum_{c \notin T(D)} \text{sgn}(c) \ell_1^{\nabla J_n(D)} \ell_2^{\nabla J_{m,k}(D)}
$$

Figure: A knot, distinguished by $F^{n,m,k}$ but not by F_n from the unknot. K □ K K 레 K K 레 K X X K K H X X K K H 제 Let $L = K_1 \cup K_2$ be an ordered oriented virtual 2-component link, where K_1 is the first component, and K_2 is the second component. Suppose that L is presented by its diagram. Denote by $O(L)$ the set of crossings where K_1 passes over K_2 . Define the over linking number $O_{\ell k}$ for L as follows:

$$
O_{\ell k}(L)=\sum_{c\in O(L)}\operatorname{sgn}(c).
$$

Analogously, denote by $U(L)$ the set of crossings where K_1 passes under K_2 and define the under linking number $U_{\ell k}$ for L as follows:

$$
U_{\ell k}(L)=\sum_{c\in U(L)}\text{sgn}(c).
$$

In virtual links the two linking numbers $O_{\ell k}(L)$ and $U_{\ell k}(L)$ may differ, as can be seen for the ordered oriented virtual Hopf link H . It is easy to see that $O_{\ell k}(\mathcal{H}) = -1$ and $U_{\ell k}(\mathcal{H}) = 0$. Also note that with reversing order of components in H , the two linking numbers will exchange.

Figure: Virtual Hopf link H.

Definition

For an ordered oriented virtual 2-component link L define its span by

$$
\text{span}(L) = O_{\ell k}(L) - U_{\ell k}(L).
$$

KOD KAR KED KED E YOUN

Let D be a diagram of an ordered oriented virtual 2-component link $L = K_1 \cup K_2$, and $C_{12}(D)$ be the set of all classical crossings in D in which K_1 and K_2 meet. For $c \in C_{12}(D)$ let ^cD be a knot diagram obtained by type-3 smoothing at $c \in D$. For $n, k \in \mathbb{Z}$ consider a set

$$
I_{n,k} = \{c \in D : \nabla J_n({}^c D) = k\}.
$$

Definition

An (n, k) -span for a 2-component link L is defined by:

$$
\operatorname{span}_{n,k}(L)=\sum_{c\in O(L)\cap I_{n,k}}\operatorname{sgn}(c)-\sum_{c\in U(L)\cap I_{n,k}}\operatorname{sgn}(c).
$$

Definition

For a 2-component link L its (n, k) -fspan is defined as follows:

$$
\text{fspan}_{n,k}(L) = \text{span}_{n,k}(L) + \text{span}_{n,-k}(L).
$$

Proposition

$$
\widetilde{F}_{K}^{n,k,m}(t,\ell,\nu) = \sum_{c \in C(D)} sgn(c) t^{\text{Ind}(c)} \ell^{\nabla J_n(D_c)} \nu^{\text{fspan}_{k,m}(D^c)} \n- \sum_{c \in T(D)} sgn(c) \ell^{\nabla J_n(D_c)} \nu^{\text{fspan}_{k,m}(D^c)} - \sum_{c \notin T(D)} sgn(c) \ell^{\nabla J_n(D)} \nu^{\text{fspan}_{k,m}(D^c)},
$$

where

$$
T(D) = \{c \in C(D) \mid \nabla J_n(D_c) = \pm \nabla J_n(D) \text{ and } \text{fspan}_{k,m}(D^c) = 0\}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

is an oriented virtual knot invariant.

 4 ロ) 4 何) 4 ヨ) 4 ヨ)

 299

B

Virtual knots VK_3 and VK_4 can be distinguished by polynomial

 $\widetilde{F}^{2,2,2}(t,\ell,\nu)$, but not by F-polynomials.

References:

- A. Gill ,M. Ivanov, M. Prabhakar, A. Vesnin, Recurrent Generalization of F-Polynomials for Virtual Knots and Links, Symmetry 14, no. 1.
- K. Kaur, M. Prabhakar, A. Vesnin, Two-variable polynomial invariants of virtual knots arising from flat virtual knot invariants, J. Knot Theory Ramifications 27 (2018), no. 13, 1842015, 22 pp.
- **Z.** Cheng, The Chord Index, its Definitions, Applications, and Generalizations, Canadian Journal of Mathematics, 73, (2021), no. 3, 597 - 621.
- 暈 Z. Cheng, H. Gao, A polynomial invariant of virtual links, J. Knot Theory Ramifications 22 (2013). no. 12.
- \blacksquare S. Satoh, K. Taniguchi, The writhes of a virtual knot, Fundamenta Mathematicae 225 (2014), 327–341.

Thank you!

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 Y 9 Q @