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Virtual knots are virtual diagrams modulo generalized Reidemeister
moves.

Figure: Classical Reidemeister moves



Virtual knots are virtual diagrams modulo generalized Reidemeister
moves.

Figure: Virtual Reidemeister moves



Flat knots are flat diagrams modulo virtual Reidemeister moves and flat
Reidemeister moves.

Figure: Flat Reidemeister moves



Flat knots may also be considered as virtual knots modulo crossing
change operation.

Figure: Crossing change operation

To define F–polynomials we assign to each classical crossing the
following weights: sgn(c), Ind(c) and ∇Jn(Dc).



Sign of a crossing sgn(c) is defined by

Figure: Sign of a classical crossing

To define an index of a crossing Ind(c) assign an integer value to each
arc in a way satisfying the rule below
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Figure: Cheng coloring



Such integer labeling, called a Cheng coloring, always exists for an
oriented virtual knot diagram.
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Figure: Cheng coloring

Using this coloring Z. Cheng and H. Gao assigned an integer value Ind(c)
to each classical crossing c of a virtual knot diagram

Ind(c) = sgn(c)(a− b − 1)



S. Satoh and K. Taniguchi introduced another invariant of virtual knots -
the n-th writhe Jn(D). For each n ∈ Z \ {0} the n-th writhe of an
oriented virtual link diagram D is defined as

Jn(D) =
∑

Ind(c) = n

sgn(c)

K. Kaur, M. Prabhakar and A. Vesnin defined n-th dwrithe of D, denoted
by Jn(D)

∇Jn(D) = Jn(D)− J−n(D)

∇Jn(D) is a flat virtual knot invariant.



For every classical crossing c of D we consider a diagram Dc , obtained by
smoothing crossing c against orientation.
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Figure: Smoothing against orientation

Flat knots [Dc ] corresponding to Dc satisfy following properties:

For a crossing c involved in RI [Dc ] = [D±].

Two crossings involved in RII have the same [Dc ].

For crossings involved in RIII and SV [Dc ] are preserved.

[Dc ] of the crossing is preserved under Reidemeister moves and
crossing change operation if it isn’t involved in it.



These properties allowed K. Kaur, M. Prabhakar and A. Vesnin to
construct a family of polynomial invariants, called F–polynomials using
∇Jn(Dc) as a weight. These invariants are defined by

F n
K (t, `) =

∑
c∈C(D)

sgn(c)t Ind(c)`∇Jn(Dc )

−
∑

c∈Tn(D)

sgn(c)`∇Jn(Dc ) −
∑

c /∈Tn(D)

sgn(c)`∇Jn(D),

where Tn(D) = {c ∈ C (D) : |∇Jn(Dc)| = |∇Jn(D)|}



Definition

Let G be an abelian group and w : C (D)→ G be a function which
assigns a value w(c) ∈ G to a classical crossing c ∈ C (D) for all
diagrams D ∈ D. Function w is said to be a weight function, write
w ∈WG , if it satisfies weight function conditions (C1)–(C3)

(C1) w is local, i.e. if D ′ is obtained from D by a generalized
Reidemeister move such that a crossing c ∈ D is not involved in this
move and c ′ ∈ D ′ is the corresponding crossing, then w(c ′) = w(c);

(C2) if diagram D ′ is obtained from D by RIII-move and involved classical
crossings a, b, c ∈ D have weights w(a), w(b) and w(c), as well as
involved crossings of a′, b′, c ′ ∈ D ′ have weights w(a′), w(b′) and
w(c ′), then w(a′) = w(a), w(b′) = w(b) and w(c ′) = w(c).
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Figure: RIII move.



(C3) if diagram D ′ is obtained from D by SV-move and involved classical
crossing c ∈ D has weight w(c), as well as involved classical
crossing c ′ ∈ D ′ has weight w ′(c ′), then w ′(c ′) = w(c).

e e
c

←→ e e
c ′

Figure: SV move.



Definition

Let w be a weight function, a digram D ′ is obtained from D by RII-move
and α, β are crossings involved. If w(β) = −w(α), then we say that w is
an odd weight function and write w ∈W odd

G . If w(β) = w(α), then we
say that w is an even weight function and write w ∈W even

G .

Figure: Even and odd weight functions on RII crossings.

An even weight function such that for every crossing obtained by
RI–move its value is fixed is a Chord Index introduced by Cheng.



Definition

A subset C ′(D) ⊂ C (D) is said to be consistent if the characteristic
function 1C ′(D) : C (D)→ {0, 1} ⊂ Z of the set C ′(D) is an even weight
function.

Definition

Let C ′(D) ⊂ C (D) be consistent. Then w ′ : C ′(D)→ G is said to be a
weight function defined for C ′(D) if w ′ satisfies weight function
conditions (C1) - (C3) for all crossings in C ′(D).

If C ′(D) ⊂ C (D) is consistent, and w ′ : C ′(D)→ G is a weight function,
then w ′ can be extended to w : C (D)→ G by defining

w(c) =

{
w ′(c), c ∈ C ′(D),

0, otherwise.



Let D(L) be the set of all diagrams of an ordered oriented virtual link L,
For a diagram D ∈ D(L) denote by R(w ,D) the set of values w(c),
where c is a classical crossing in D that may be reduced by a single
RI-move. Then take a union over all diagrams of L:

R(w , L) =
⋃

D∈D(L)

R(w ,D).

Suppose there are two weights v ∈W odd
G1

and w ∈W even
G2

. Take g ∈ G2

such that either g 6∈ R(w , L) or R(v , L) = {0}. Then I–function is
defined by

I (D; v ,w , g) =
∑

w(c)=g

v(c).



Assume that our weight functions are local with respect to crossing
change operation. Then to every weight function w : C ′(D)→ G we can
associate a weight function w∗ : C ′(D)→ G induced by taking a mirror
image, i.e. w∗(c) = w(c∗).
We define a flat I–function by

If (D; v ,w , g) =
∑

w(c)=g

v(c) +
∑

w∗(c)=g

v∗(c).

Theorem

I (D; v ,w , g) is an ordered oriented virtual link invariant,

If (D; v ,w , g) is an ordered oriented flat virtual link invariant.



Applying the type-1 smoothing to a classical crossing c ∈ D, which
belongs to a single component, we obtain a link diagram with one less
classical crossing and the same number of components.

Figure: Type-1 smoothing.



Consider a diagram of an (n− 1)-component ordered oriented virtual link.
Applying the type-2 smoothing to a classical crossing c such that two
meeting arcs belong to the i-th component we obtain a diagram of an
ordered n-component link.

Figure: Type-2 smoothing.

.



Consider a diagram of an n-component ordered oriented virtual link, and
assume that crossing c belong to components n and (n − 1). Then after
type-3 smoothing we will get a diagram of an (n− 1)-component ordered
link.

Figure: Type-3 smoothing.



Let us denote by VLflat a free Z-module generated by ordered oriented
flat virtual links. For a virtual link diagram D denote by [D] a flat virtual
link whose diagram is obtained from D by replacing all classical crossings
by flat crossings, then [D] ∈ VLflat.

Theorem

Functions Si defined as

S1(c) = [Dc ], S2(c) = [Dc ], and S3(c) = [cD],

are even weight functions taking values in VLflat.



Corollary

Functions B i and B i
flat defined by

B i =
∑

c∈Ci (D), [Dc ] 6=[DtO]

sgn(c)[K c ],

B i
flat =

∑
c∈Ci (D), [Dc ] 6=[DtO]

sgn(c)([K c ]− [K c∗ ]),

are virtual link and flat virtual link invariants. Ci (D) are crossings c s.t.
both arcs belong to the i-th component of a link.

These new invariants appear to be useful studying connected sums of
virtual knots. As an example we give a new proof of Kishino knot being
nontrivial.



Let K be a Kishino knot. We will show that B1(K ) 6= 0, hence K is
distinguished from the unknot by B1.

Figure: Kishino knot.

To calculate B1(K ) we find signs of all crossings

sgn(a) = sgn(d) = −1 and sgn(b) = sgn(c) = 1.



Figure: Kishino knot.

B1(K ) = −[K a] + [K b] + [K c ]− [K d ].

Each smoothing provide an ordered oriented 2-component virtual link.
One can check, that

[K a] = [K d ] and [K b] = [K c ],

so we only need to prove that [K a] and [K b] are distinct.



Figure: Diagrams of K1 = K a and K2 = K b.

To simplify the notation we denote K a as K1 and K b as K2. The only
crossings corresponding to 2-nd component of K1 are c and d and there
are no such crossings in K2. Hence

B2
flat(K1) = [K c

1 ]− [K c∗

1 ]− [K d
1 ] + [K d∗

1 ] and B2
flat(K2) = 0,



Figure: Diagrams of K c
1 and K d

1 .

Note that in K c
1 and in K d∗

1 the 3-rd component is nontrivially linked
with two other components, but for K c∗

1 and K d
1 it is not true.

Figure: Diagrams of K c∗
1 and K d∗

1 .



B2
flat(K1) = [K c

1 ]− [K c∗

1 ]− [K d
1 ] + [K d∗

1 ]

Since
[K c

1 ] 6= [K c∗

1 ], [K d
1 ], and [K d∗

1 ] 6= [K c∗

1 ], [K d
1 ]

there are no cancelations and B2
flat(K1) 6= 0. Therefore Kishino knot is

not equivalent to the unknot.



Now we define a recursive procedure to define virtual link invariants.

Take an invariant of ordered oriented flat virtual links A1 taking
values in a group G .

Take an even weight function F1 ∈W even
VLflat

Take a couple of weight functions w1 ∈W even
H1

and u1 ∈W odd
Z

The invariant may be extended to a homomorphism A1 : VLflat → G ,
hence, its composition with F1 defines a weight function A1 ◦ F1 ∈W even

G .

v1 = u1 ∗ (A1 ◦ F1)

I (D; v1,w1, h1) =
∑

w1(c)=h1

v1(c)

If (D; v1,w1, h1) =
∑

w1(c)=h1

v1(c) +
∑

w1(c∗)=h1

v1(c∗),



We continue the procedure by taking on each step some weight functions

ui ∈W odd
G , Fi ∈W even

VLflat
, wi ∈W even

Hi
.

We get a family of ordered oriented flat virtual link invariants Ai defined
by

Ai (D) = If (D; vi−1,wi−1, hi−1), for i > 1,

where
vi−1 = ui−1 ∗ (Ai−1 ◦ Fi−1).

To make this procedure correct we require R(ui ,D) = {0} for all D.

Corollary

Given three weight functions u ∈W odd
H , w ∈W even

G and F ∈W even
VLflat

such
that R(u, L) = {0} for all links L and a sequence {gi ∈ G}i∈N there is an
infinite sequence of weight functions {vi}i∈N and corresponding
invariants generated by them.



We continue the procedure by taking on each step some weight functions

ui ∈W odd
G , Fi ∈W even

VLflat
, wi ∈W even

Hi
.

We get a family of ordered oriented flat virtual link invariants Ai defined
by

Ai (D) = If (D; vi−1,wi−1, hi−1), for i > 1,

where
vi−1 = ui−1 ∗ (Ai−1 ◦ Fi−1).

To make this procedure correct we require R(ui ,D) = {0} for all D.

Corollary

Given three weight functions u ∈W odd
H , w ∈W even

G and F ∈W even
VLflat

such
that R(u, L) = {0} for all links L and a sequence {gi ∈ G}i∈N there is an
infinite sequence of weight functions {vi}i∈N and corresponding
invariants generated by them.



Theorem

Let S = {s1, . . . , sk} be a finite set of weight functions where
si = Ami ◦ Fmi for some mi ∈ N, w ∈W odd

Z and v ∈W even
Z such that

R(v ,D) = {0} for all D. Then

F (t, `1, . . . , `k) =
∑

c∈C(D)

w(c)tv(c)`
s1(c)
1 · · · `sk (c)

k −
∑

c∈T (D)

w(c)`
s1(c)
1 · · · `sk (c)

k

−
∑

c 6∈T (D)

w(c)`
Am1

(D)
1 · · · `Amk

(D)

k

is a link invariant, where T (D) = {c ∈ C (D) | si (c) ∈ R(si , L) for all i}.

Example

Let v = Ind, w = sgn, A1 = ∇Jn and s1 = ∇Jn(Dc) = A1 ◦ F1, where F1

is a type-1 smoothing. Then F (t, `1) coincide with n-th F -polynomial.



Take F1 to be a type-1 smoothing, and let Fi = F1 for i ≥ 2. Define
A1 = If (D; sgn, Ind, n) = ∇Jn. By taking ui = sgn ∗Ind for i ≥ 1 we
define ∇Jn,m(D)

∇Jn,m(D) = A2(D) = If (D; u2 ∗ (A1 ◦ F1),w1,m) =

=
∑

Ind(c)=m

sgn(c)Ind(c)∇Jn(Dc)−
∑

Ind(c)=−m

sgn(c)Ind(c)∇Jn(Dc)

=
∑

Ind(c)=|m|

Ind(c) sgn(c)∇Jn(Dc).



Proposition

A family of F n,m,k -polynomials is an oriented virtual knot invariant.

F n,m,k
D (t, `1, `2) =

∑
c∈C(D)

sgn(c)t Ind(c)`
∇Jn(Dc )
1 `

∇Jm,k (Dc )
2

−
∑

c∈T (D)

sgn(c)`
∇Jn(Dc )
1 `

∇Jm,k (Dc )
2 −

∑
c 6∈T (D)

sgn(c)`
∇Jn(D)
1 `

∇Jm,k (D)
2

Figure: A knot, distinguished by F n,m,k but not by Fn from the unknot.



Let L = K1 ∪ K2 be an ordered oriented virtual 2-component link, where
K1 is the first component, and K2 is the second component. Suppose that
L is presented by its diagram. Denote by O(L) the set of crossings where
K1 passes over K2. Define the over linking number O`k for L as follows:

O`k(L) =
∑

c∈O(L)

sgn(c).

Analogously, denote by U(L) the set of crossings where K1 passes under
K2 and define the under linking number U`k for L as follows:

U`k(L) =
∑

c∈U(L)

sgn(c).



In virtual links the two linking numbers O`k(L) and U`k(L) may differ, as
can be seen for the ordered oriented virtual Hopf link H. It is easy to see
that O`k(H) = −1 and U`k(H) = 0. Also note that with reversing order
of components in H, the two linking numbers will exchange.

1 2

Figure: Virtual Hopf link H.

Definition

For an ordered oriented virtual 2-component link L define its span by

span(L) = O`k(L)− U`k(L).



Let D be a diagram of an ordered oriented virtual 2-component link
L = K1 ∪ K2, and C12(D) be the set of all classical crossings in D in
which K1 and K2 meet. For c ∈ C12(D) let cD be a knot diagram
obtained by type-3 smoothing at c ∈ D. For n, k ∈ Z consider a set

In,k = {c ∈ D : ∇Jn(cD) = k}.

Definition

An (n,k)-span for a 2-component link L is defined by:

spann,k(L) =
∑

c∈O(L)∩In,k

sgn(c)−
∑

c∈U(L)∩In,k

sgn(c).

Definition

For a 2-component link L its (n, k)-fspan is defined as follows:

fspann,k(L) = spann,k(L) + spann,−k(L).



Proposition

F̃ n,k,m
K (t, `, v) =

∑
c∈C(D)

sgn(c)t Ind(c)`∇Jn(Dc )v fspank,m(Dc )

−
∑

c∈T (D)

sgn(c)`∇Jn(Dc )v fspank,m(Dc ) −
∑

c /∈T (D)

sgn(c)`∇Jn(D)v fspank,m(Dc ),

where

T (D) = {c ∈ C (D) | ∇Jn(Dc) = ±∇Jn(D) and fspank,m(Dc) = 0}

is an oriented virtual knot invariant.



[h]

c0 c1

b b bb bb b b
c2bb bb b b · · ·· · ·

· · ·· · ·

cqbb bb b b
Figure: Virtual knot VKq.

Virtual knots VK3 and VK4 can be distinguished by polynomial
F̃ 2,2,2(t, `, v), but not by F-polynomials.
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Thank you!


