Sharpness of the Morton-Franks-Williams inequality

Ilya Alekseev

Saint Petersburg State University

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Braid index: complexity measure of knots and links

Theorem (J. W. Alexander, 1923)

Any link can be presented as a closed braid.

Definition

The braid index of a link \mathcal{L} is the least number of strands among all braid representatives of \mathcal{L} .

イロト 不得下 イヨト イヨト

э

Aim

Calculate braid index of infinite families of knots and links.

Braid index: complexity measure of knots and links

Theorem (J. W. Alexander, 1923)

Any link can be presented as a closed braid.

Definition

The braid index of a link \mathcal{L} is the least number of strands among all braid representatives of \mathcal{L} .

・ロト ・雪 ト ・ ヨ ト ・ コ ト

э

Aim

Calculate braid index of infinite families of knots and links.

Braid index: complexity measure of knots and links

Theorem (J. W. Alexander, 1923)

Any link can be presented as a closed braid.

Definition

The braid index of a link \mathcal{L} is the least number of strands among all braid representatives of \mathcal{L} .

・ロット (雪) (日) (日)

э

Aim

Calculate braid index of infinite families of knots and links.

Skein polynomial (aka HOMFLY-PT polynomial)

Theorem (P. Freyd, D. Yetter, J. Hoste, W. Lickorish, K. Millett, A. Ocneanu, 1985; J. Przytycki, P. Traczyk, 1987)

There is a unique function that maps each link diagram \mathcal{D} to a two-variable Laurent polynomial $\mathcal{P}(\mathcal{D}; a, z) \in \mathbb{Z}[a^{\pm 1}, z^{\pm 1}]$ such that:

- 1. isotopic links map to the same polynomial;
- 2. the trivial knot maps to 1;
- 3. relation $a\mathcal{P}(\mathcal{D}_+; a, z) a^{-1}\mathcal{P}(\mathcal{D}_-; a, z) = z\mathcal{P}(\mathcal{D}_0, a, z)$ holds;

Morton – Franks – Williams inequality (weak form)

Theorem (H. Morton, J. Franks, R. Williams, 1986)

For any closed braid diagram $\mathcal D$ with *n* strands, one has

(MFW) $(\operatorname{maxdeg}_{a}(\mathcal{P}_{\mathcal{D}}) - \operatorname{mindeg}_{a}(\mathcal{P}_{\mathcal{D}}))/2 + 1 \leq n.$

Corollary

For any link \mathcal{L} , one has

 $\left(\mathrm{maxdeg}_{\boldsymbol{\partial}}(\mathcal{P}_{\mathcal{L}})-\mathrm{mindeg}_{\boldsymbol{\partial}}(\mathcal{P}_{\mathcal{L}})\right)/2+1\leq\mathrm{Br}(\mathcal{L}).$

Previous results

Objective

Describe infinite families of closed braid diagrams such that (MFW) is sharp.

- J. Franks, R. F. Williams, 1987. Closures of *positive* braids that begin and end with the half twist.
- Y. Diao, G. Hetyei, P. Liu, 2019. Closures of *alternating* braids that have no columns containing exactly one crossing.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

First main result and its applications

Theorem (I. A., 2019)

The Morton–Franks–Williams inequality is sharp for all closed locally twisted braid diagrams.

Folklore (weak form)

If a closed homogeneous braid diagram realizes the braid index, then it realizes the crossing number.

Corollary

Any closed locally twisted braid diagram realizes the crossing number.

First main result and its applications

Theorem (I. A., 2019)

The Morton–Franks–Williams inequality is sharp for all closed locally twisted braid diagrams.

Folklore (weak form)

If a closed homogeneous braid diagram realizes the braid index, then it realizes the crossing number.

Corollary

Any closed locally twisted braid diagram realizes the crossing number.

First main result and its applications

Theorem (I. A., 2019)

The Morton–Franks–Williams inequality is sharp for all closed locally twisted braid diagrams.

Folklore (weak form)

If a closed homogeneous braid diagram realizes the braid index, then it realizes the crossing number.

Corollary

Any closed locally twisted braid diagram realizes the crossing number.

Examples of locally twisted braid diagrams

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

Alternating link diagrams

Theorem (L. Kauffman, K. Murasugi, M. Thistlethwaite, 1987)

Any *reduced* alternating diagram realizes the crossing number.

Theorem (W. Menasco, M. Thistlethwaite, 1993)

Any two reduced alternating diagrams representing the same link can be related by *flypes*.

Alternating link diagrams

Theorem (L. Kauffman, K. Murasugi, M. Thistlethwaite, 1987)

Any *reduced* alternating diagram realizes the crossing number.

Theorem (W. Menasco, M. Thistlethwaite, 1993)

Any two reduced alternating diagrams representing the same link can be related by *flypes*.

Morton-Franks-Williams inequality (strong form)

Definition

The *Seifert circles* of a link diagram \mathcal{D} are simple closed curves obtained by smoothing all crossings of \mathcal{D} .

Theorem (S. Yamada, 1987)

Any link that admits a diagram \mathcal{D} with $s(\mathcal{D})$ Seifert circles can be presented as a closed braid with $s(\mathcal{D})$ strands.

Morton-Franks-Williams inequality (strong form)

Theorem (H. Morton, J. Franks, R. Williams, 1986)

For any diagram $\mathcal D$ of a link $\mathcal L$, one has

(MFW) $(\operatorname{maxdeg}_{a}(\mathcal{P}_{\mathcal{L}}) - \operatorname{mindeg}_{a}(\mathcal{P}_{\mathcal{L}}))/2 + 1 \leq s(\mathcal{D}),$

where $s(\mathcal{D})$ is the number of Seifert circles of \mathcal{D} .

Corollary

For any diagram \mathcal{D} of a link \mathcal{L} , one has $(\operatorname{maxdeg}_{a}(\mathcal{P}_{\mathcal{D}}) - \operatorname{mindeg}_{a}(\mathcal{P}_{\mathcal{D}}))/2 + 1 \leq \operatorname{Br}(\mathcal{L}).$

Sharpness of the Morton–Franks–Williams inequality for alternating diagrams

Theorem (Y. Diao, G. Hetyei, P. Liu, 2019)

The Morton–Franks–Williams inequality is sharp for all alternating diagrams that have no lonely crossings.

Objective

Describe infinite families of link diagrams such that (MFW) is sharp.

Sharpness of the Morton–Franks–Williams inequality for alternating diagrams

Theorem (Y. Diao, G. Hetyei, P. Liu, 2019)

The Morton–Franks–Williams inequality is sharp for all alternating diagrams that have no lonely crossings.

Objective

Describe infinite families of link diagrams such that (MFW) is sharp.

くロン 入職 とくほ とくほ とう

Locally twisted link diagrams

Definition

A stencil is *knitted* if any two Seifert circles share at most one braid box.

Definition

A link diagram is *locally twisted* if it can be obtained from a knitted stencil by inserting locally twisted braids.

Locally twisted link diagrams

Definition

A stencil is *knitted* if any two Seifert circles share at most one braid box.

Definition

A link diagram is *locally twisted* if it can be obtained from a knitted stencil by inserting locally twisted braids.

Locally twisted link diagrams

Definition

A stencil is *knitted* if any two Seifert circles share at most one braid box.

Definition

A link diagram is *locally twisted* if it can be obtained from a knitted stencil by inserting locally twisted braids.

Second main result and its applications

Theorem (I. A., 2020)

The Morton–Franks–Williams inequality is sharp for all locally twisted braid diagrams.

Folklore (moderate form)

If a *homogeneous* link diagram realizes the Seifert number, then it realizes the crossing number.

Corollary

Any homogeneous locally twisted link diagram realizes the crossing number.

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Second main result and its applications

Theorem (I. A., 2020)

The Morton–Franks–Williams inequality is sharp for all locally twisted braid diagrams.

Folklore (moderate form)

If a *homogeneous* link diagram realizes the Seifert number, then it realizes the crossing number.

Corollary

Any homogeneous locally twisted link diagram realizes the crossing number.

Second main result and its applications

Theorem (I. A., 2020)

The Morton–Franks–Williams inequality is sharp for all locally twisted braid diagrams.

Folklore (moderate form)

If a *homogeneous* link diagram realizes the Seifert number, then it realizes the crossing number.

Corollary

Any homogeneous locally twisted link diagram realizes the crossing number.

Homogeneous diagrams

Definition

A link diagram \mathcal{D} is said to be *homogeneous* if each block of the Seifert graph of \mathcal{D} is homogeneous.

Homogeneous diagrams

- Any positive diagram is homogeneous.
- Any alternating diagram is homogeneous.
- The Seifert circles of D divide the plane into regions. If for each of these regions, crossings have the same type, then D is homogeneous.

Question 1

Does any locally twisted link diagram realize the crossing number?

Question 2

Without referring to the brute-force enumeration method, show that the crossing number of the knot 9_{49} is 9.

Folklore (strong form)

If for a link diagram \mathcal{D} ,

- the canonical Seifert surface of D has minimal genus (among the canonical surfaces of other diagrams);
- D realizes the Seifert number,

then $\ensuremath{\mathcal{D}}$ realizes the crossing number.

Question 3

Describe new infinite families of link diagrams realizing the canonical genus.