
Intersection formulas for parities on virtual knots

Igor Nikonov

Lomonosov Moscow State University

VIII Russian-Chinese conference on knot theory and related topics
24 December 2021

Igor Nikonov (MSU) Intersection formulas 8RCCKT 1 / 44



Contents

1 Parity

2 Parity cycle

3 Quasi-index

Igor Nikonov (MSU) Intersection formulas 8RCCKT 2 / 44



Parity (V. Manturov, 2009).

Parity is a rule to assign numbers 0 and 1 to the (classical) crossings of
diagrams of a knot in a way compatible with Reidemeister moves.

0 a -a a

b c

bc

a+b+c=0

a

Figure: Parity axioms.

Applications of parity:

strengthening of knot invariants

extention of knot invariants (via parity projection between knot
theories)

minimality in a strong sense (parity bracket)
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Link parity

Generalized linking number

lk = 1
2

∑
c odd sgn(c)

+ -
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Gaussian parity

Definition

Gaussian parity of a crossing is the parity of the number of (classical)
crossings that lie on a half of the knot corresponding to the crossing.

Example

1 1

0

Odd writhe number J =
∑

c odd sgn(c) = −2.
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Virtual diagram

Definition

A virtual diagram is a generic immersion of a framed 4-graph into R2 (and
also the image of this immersion), the image of each vertex is endowed
with a classical crossing structure (with a choice for underpass and
overpass specified) and intersection points of different edges are called
virtual crossings and marked by a circle.

Example
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Virtual knot

Figure: Diagram of the virtual trefoil

Definition

A virtual link is an equivalence class of virtual diagrams modulo
Reidemeister moves and detour moves.

R1:

R2:

R3:

DM:
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Knots in thickened surfaces

Figure: Virtual trefoil

Definition

A virtual knot is a knot in a thickened oriented surface S2
g × I considered

up to isotopies and stabilizations/destabilizations.

Figure: Stabilization move.
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Gauss diagrams

+
+

Figure: Gauss diagram of the virtual trefoil

Definition

A virtual knot is an equivalence class of Gauss diagrams modulo
Reidemeister moves.

R1: ±

R2: + -

+ -

R3:
+-

-
-

-

+
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Flat and free knots

Figure: Crossing change and virtualization

Definition

Flat knots are virtual knots modulo crossing changes.
Free knots are virtual knot modulo crossing changes and virtualizations.

+
+

Figure: A virtual, a flat and a free knots
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Knot theories

virtual knots

flat knots knots in thickened
surfaces

generally immersed
curves in a surface

free knots

classical knots
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Diagram categories

A diagram category is a category K whose

Objects are diagrams of some knot K;

Morphisms are compositions of elementary morphisms. Elementary
morphisms are:

isotopies
Reidemeister moves
symmetries of diagrams.

For a diagram D ∈ K, let V(D) be the set of crossings of D.

Remark

The map D 7→ V(D) is a functor from K to the category of finite sets and
partial bijections between them.
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Parity with coefficients in a group A

Definition

A parity p with coefficients in an abelian group A on a diagram category K
is a family of maps pD : V(D)→ A defined for any diagram D such that
for any elementary morphism f : D → D ′:

1 pD′(v
′) = pD(v) for any correspondent crossings v ∈ V(D) and

v ′ ∈ V(D ′) ;

2 pD(v) = 0 if f is a decreasing first Reidemeister move and v is the
disappearing crossing;

3 pD(v1) + pD(v2) = 0 if f is a decreasing second Reidemeister move
and v1 and v2 are the disappearing crossings;

4 pD(v1) + pD(v2) + pD(v3) = 0 if f is a third Reidemeister move and
v1, v2, v3 take part in the move.
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Relation 2p = 0 for a parity

Proposition

For any parity p and any crossing a one has 2p(a) = 0.

a
b

aa
c

d
b

Figure: Proof of the equality 2p(a) = 0
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Oriented parity

Definition

A parity p with coefficients in an abelian group A on a diagram category K
is a family of maps pD : V(D)→ A defined for any diagram D such that
for any elementary morphism f : D → D ′:

1 pD′(v
′) = pD(v) for any correspondent crossings v ∈ V(D) and

v ′ ∈ V(D ′) ;

2 pD(v) = 0 if f is a decreasing first Reidemeister move and v is the
dissapearing crossing;

3 pD(v1) + pD(v2) = 0 if f is a decreasing second Reidemeister move
and v1 and v2 are the dissapearing crossings;

4 ε(v1)pD(v1) + ε(v2)pD(v2) + ε(v3)pD(v3) = 0 if f is a third
Reidemeister move and v1, v2, v3 take part in the move, and ε(vi ) is
the incidence index of the crossing vi to the triangle of the move.
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Oriented parity

-

-
++

p(u)-p(v)-p(w)=0

u
v

w

Figure: Incidence indices and an oriented parity relation

Remark

Oriented parity does not depend on orientation of the knot.

Example

The Gaussian index ip(v) = D · D l
v is an oriented parity with coefficient in

Z.
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Parities on virtual knots

For a long time, the Gaussian parity ip was the only one knows parity on
virtual knots.
In [N., Parity on based matrices, arxiv:2110.04915] the reduced stable
parity was constructed.
The construction below generalizes the construction of the reduced stable
parity.
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Potentials

Definition

Let K be a virtual knot and p be an oriented parity on diagrams of the
knot K with coefficients in an abelian group A. For any diagram D of the
knot and any two arc a and b in D, define the potential as shown in the
figure. Analogously, one defines the potentials δb,a, δa,b̄, δb̄,a, δā,b̄, δb̄,ā

a

b

p(v)=δa,b p(w)=δb,a

a

v w b

a

b

p(v')=δa,b̅ p(w')=δb̅,a

a

v' w'b

a

b

p(v'')=δa̅,b̅ p(w'')=δb̅,a̅

a

v'' w''b

R2 R2 R2

Figure: Potentials between arcs
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Parity cycle

Definition

Let K be a virtual knot and p be an oriented parity on diagrams of the
knot K with coefficients in an abelian group A. For any diagram D of the
knot, define the parity cycle by the formula

δpD =
∑

a∈A(D)

δa · a ∈ C1(D,A).

p(v)=δa

a
v

Figure: The potential δa = δa,ā of an arc a
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Intersection formula

Theorem

Let p be an oriented parity with coefficients in an abelian group A on the
diagrams of an oriented virtual knot K, D be a diagram of K, and δpD be
the parity cycle. Then

1 δpD is a genuine 1-cycle in the cell complex C∗(D̃,A), i.e. dδpD = 0;

2 δpD is an invariant cycle;

3 δpD is normalized: D · δpD = 0;

4 (the intersection formula) for any crossing v ∈ V(D) we have

pD(v) = D l
v · δ

p
D .

Theorem

The intersection formula defines an isomorphism P(K,A) ' NIC(K,A)
between the set P(K,A) of oriented parities with coefficients in A and the
set NIC(K,A) of normalized invariant cycles with coefficients in A.
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Biquandle

Definition
Let B be a set with binary operations ◦, ∗ such that:

x ◦ x = x ∗ x
the maps ∗x , ◦x : B → B and S : B × B → B × B where S(x , y) = (y ∗ x , x ◦ y) are
bijections.

(x ◦ y) ◦ (z ◦ y) = (x ◦ z) ◦ (y ∗ z)

(x ◦ y) ∗ (z ◦ y) = (x ∗ z) ◦ (y ∗ z)

(x ∗ y) ∗ (z ∗ y) = (x ∗ z) ∗ (y ◦ z)

Then (B, ◦, ∗) is called a biquandle.
For a knot diagram D, the map c : A(D)→ X which satisfies the conditions in Fig. is called a
colouring. The set of the colouring of D is denoted by ColB(D).

x

y

y ∗ x

x ◦ y x

y x ◦ y

y ∗ x

Figure: Colouring rule
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Biquandle cocycle and parity cycle

Definition

A map θ : B → A is called a biquandle 1-cocycle of B with coefficients in
the group A if for any x , y ∈ B

θ(x)− θ(x ◦ y) = θ(y)− θ(y ∗ x).

Proposition

Let θ be a biquandle 1-cocycle with coefficients in A. For a diagram D
and a colouring c ∈ ColB(D) consider

δθD,c =
∑

a∈A(D)

(θ ◦ c)(a) · a ∈ C1(D,A)

and δθD =
∑

c ′∈ColB(D) δ
θ
D,c ′ . Then δθD is an invariant 1-cycle with

coefficients in A.
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Colouring monodromy

Definition

The colour monodromy group MonB(D) of the diagram D as the subgroup in the
permutation group of the colouring set ColB(D), formed by permutations
f∗ : ColB(D)→ ColB(D) where f : D → D is an arbitrary morphism (a
composition of isotopies and Reidemeister moves).

Example

Consider the biquandle B = {1, 2, 3} with the operations given by the matrices

◦ =

 1 1 1
3 3 3
2 2 2

 , ∗ =

 1 2 3
2 3 1
3 1 2



2

2

2

3

3 3 3 3
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Parity quasi-index

Definition

Let p be an oriented parity with coefficients in a group A on diagrams of
an oriented virtual knot K and δ be its parity cycle. Let D be a knot
diagram. For any crossing v denote

πD(v) = δc − δa = δb − δd .

The map πD : V(D)→ A is called the parity quasi-index of p.

δa

δa+π(v)

δcv v

= δb

δb-π(v)

δd=

Figure: The quasi-index of a crossing
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Quasi-index

Definition

Let K be a virtual knot. A family of maps πD : V(D)→ A,D ∈ K, is called a
quasi-index on the diagrams of the knot K if the following conditions hold

(Q0) for any Reidemeister move f : D → D ′ and any crossing v ∈ V(D) which
does not take part in the move, one has πD(v) = πD′(f∗(v));

(Q2) πD(v1) = πD(v2) for any crossings v1, v2 ∈ V(D) to which a decreasing
second Reidemeister move can be applied;

(Q3) if v1, v2, v3 ∈ V(D) are the crossings which take part in a third Reidemeister
move f : D → D ′ then there exists an element λ(f ) ∈ A such that

πD′(f∗(vi )) = πD(vi ) + ε∆(vi ) · λ(f ), i = 1, 2, 3,

where ε∆(vi ) is the incidence index of the crossing vi to the disappearing
triangle ∆.

A quasi-index π is called an index on the diagrams of the knot K if the terms
λ(f ) in condition (Q3) are equal to 0 for all third Reidemeister moves.
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Note on index

In 2004 V. Turaev assigned a (signed) index n to crossings of flat knot
diagrams and defined a polynomial invariant (index polynomial). This
polynomial was numerously rediscovered in various forms afterwards by
A. Henrich, Z. Cheng, Y.H. Im, K. Lee, S.Y. Lee, L. Kauffman and others.
The notion of index was axiomatized by Z. Cheng in 2017 (under the
name chord index). M. Xu gave the most general formulation of index
(weak chord index) which allows to define index polynomial.

Remark

A parity p is not an index, but a signed index, i.e. sgn · p is an index.
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Intersection formula for the quasi-index

Theorem

Let K be a virtual knot and p be an oriented parity with coefficients in a
group A on the diagrams of the knot K. Let δ be the parity cycle of p and
πD : V(D)→ A, D ∈ K, be the parity quasi-index. Then

1 the family of maps π is a quasi-index on diagrams of the knot K;

2 for any diagram D ∈ K there is a unique element ρ(D) ∈ A such that

δD =
∑

v∈V(D)

πD(v) · Dr
v + ρ(D) · D ∈ H1(D,A). (1)

Corollary (Intersection formula for the quasi-index)

pD(v) =
∑

v ′∈V(D)

πD(v ′) · (D l
v · Dr

v ′)− ρ(D) · ipD(v)
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Example of quasi-index which is not an index

Example

Consider the biquandle B = {1, 2, 3} with the operations given by the
matrices

◦ =

 1 1 1
3 3 3
2 2 2

 , ∗ =

 1 2 3
2 3 1
3 1 2


and the 1-cocycle θ ∈ H1(B,Z3) such that θ(1) = 0, θ(2) = 1 and
θ(3) = −1.

3

31

2

2

31

1

1
2

2

2
3

31

2 3
2

2

1

R3
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Quasi-index and biquandle 1-cocycle

Remark

Let K be a virtual knot, B be a biquandle and θ ∈ H1(B,A) be a cocycle
which defines an oriented parity p with coefficients in A on the diagrams
of the knot K. Then the following conditions ensure that the quasi-index
π of the parity p is an index on the diagrams of K: for all x , y , z ∈ B

θ(x)− θ(x ◦ y)− θ(x ◦ z) + θ ((x ◦ y) ◦ (z ◦ y)) = 0,

θ(x)− θ(x ◦ y)− θ(x ∗ z) + θ ((x ◦ y) ∗ (z ◦ y)) = 0,

θ(x)− θ(x ∗ y)− θ(x ∗ z) + θ ((x ∗ y) ∗ (z ∗ y)) = 0.

The conditions above come from the equations πD′(v
′
i )− πD(vi ) = 0 for

the crossings vi participating in third Reidemeister moves.
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The signature of a quasi-index

Definition

Let π be an quasi-index on the diagrams of a virtual knot K with
coefficients in an abelian group A. Let D be a diagram of K. Then the
signature σ(π) of the quasi-index π is defined by the formula

σ(π) =
∑

v∈V(D)

πD(v) · (D · Dr
v ) = −

∑
v∈V(D)

πD(v) · ipD(v) ∈ A.

Note that σ(π) = D · δD where δ is the correspondent invariant 1-cycle.

Proposition

Let π be an quasi-index on the diagrams of a virtual knot K with
coefficients in an abelian group A. Then the signature σ(π) is invariant
under Reidemeister moves.
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Quasi-index monodromy

Example

Consider the constant index π ≡ 1 with coefficients in Z on the unknot
diagrams. Take the diagram D below and set ρ(D) = 0. Consider the
morphism f : D → D which consists of two first, one second Reidemeister
move and detour moves. Then the reminder term ρ changes by 1. Hence,
we have a monodromy group Mon(π) which coincides with the coefficient
group Z.

2 2

1

1

2 2

2

2

2

3 3

R1 R2

Figure: Quasi-index monodromy
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Loop index values

Definition

Let π be an index on diagrams of K with coefficients in A. Denote the
index values of the loops of type l− and r+ by π• ∈ A and the values of
the loops of type l+ and r− by π◦ ∈ A.
The index π is l+-reduced if π◦ = 0. Analogously, the index π is
r+-reduced if π• = 0. And π is R1-reduced if π◦ = π• = 0.

l+ l-r+ r-

Figure: Types of loops
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Intersection formula for l+-reductions of indices

Theorem

Let π be an index on diagrams of a virtual knot K with coefficients in an
abelian group A and let π◦ ∈ A be the index value of the crossings of
types l+ and r−. Then the formula

δ̄πD =
∑

v∈V(D) : πD(v) 6=π◦
sgn(v)πD(v) · D−v

defines an invariant 1-cycle δ̄πD and the formula

p̄πD(v) =
∑

v ′∈V(D) : πD(v ′) 6=π◦
sgn(v ′)πD(v ′) · (D l

v · D−v ′)

defines an oriented parity p̄π on diagrams of the knot K with coefficients
in the group Ā = A/ 〈σ̄(π)〉, where σ̄(π) = σ(π̄) is the signature of the
l+-reduction π̄.
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Long knots

Definition
A long virtual knot is an equivalence class of long virtual knot diagrams modulo
isotopies, Reidemester moves and detour moves.

Definition

Given a crossing v ∈ V(D) of a long knot diagram D, the oriented smoothing at
v splits the diagram D into the open half Do

v of D at the crossing v and the
closed half Dc

v of D at v .

v
Dcv

Dov

For a crossing v ∈ V(D) of the diagram D define its order o(v) as follows:
o(v) = 1 if Dc

v = Dr
v , and o(v) = −1 if Dc

v = D l
v .
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Intersection formula for long knots

Remark
The case of long knots has two features.

1 Since a long knot is not closed, there is no normalization condition on the
parity 1-cycle.

2 Using closed halves, one can localize the increments which the parity
quasi-index produces under Reidemeister moves, and resolve the problem of
constructing the parity cycle from the parity quasi-index.

Theorem
Let π be a quasi-index on diagrams of a long virtual knot K with coefficients in
an abelian group A, and ρ ∈ A be an arbitrary element. Then the formula

pπD(v) = −o(v)
∑

v ′∈V(D)

o(v ′)πD(v ′) · (Dc
v · Dc

v ′) + o(v) · ipD(v) · ρ

defines an oriented parity pπ on diagrams of K with coefficients in A.
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Intersection formula for links

Theorem

Let D = D1 ∪ · · · ∪ Dd be a diagram of an oriented virtual link L, and p
be an oriented parity with coefficients in A. Let δp be the parity cycle of p.
For any crossings v and w of components Di and Dj denote the path from
v to w in Di (along the orientation of the component) by γ1, and the path
from w to v in Dj by γ2. Let γ = γ1γ2. Then

ηγ(v)pD(v) + ηγ(w)pD(w) = γ · δpD

where ηγ(v) and ηγ(w) are the incidence indices of the crossings v and w
to the cycle γ.

v w

DjDi

γ1 γ2

+1 -1

Figure: Paths γ1 and γ2 and the incidence indicesIgor Nikonov (MSU) Intersection formulas 8RCCKT 36 / 44



Link parity

Example (Link parity)

Let L = K1 ∪ · · · ∪ Kd be an oriented virtual link with d components, and
A be an abelian group. Choose an arbitrary (d − 1)-vector
l = (l1, . . . , ld−1) in Ad−1. Denote also ld = 0.
Let D = D1∪ · · ·∪Dd be a diagram of the link L. For a crossing v ∈ V(D)
of components Di and Dj , its link parity lplD(v) is defined by the formula

lplD(v) = li − lj .

Then by definition lpl(v) = 0 for any self-crossing if D. Hence, δlp
l

= 0.
Thus, a parity on links can not be restored from the parity cycle in general.

DjDi
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Intersection formula for links

Remark

Let P(L,A) be the set of oriented parities with coefficients in A on the
diagrams of the link L and NIC(L,A) be the set of normalized invariant
cycles with coefficients in A on the diagrams of L. The intersection
formula defines a homomorphism

∆: P(L,A)→ NIC(L,A).

Then ker ∆ = LP(L,A) is the subgroup consisting of link parities. Note
that LP(L,A) ' Ad−1.
On the other hand, in general the map ∆ is not an epimorphism.
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Intersection formula for links

Example

Let D be the diagram of a link L with three components. Consider a
constant 1-cycle δ on L with coefficients in Z2: δD(a) = 1 for any arc
a ∈ A(D). Then δ is a normalized invariant cycle.
There is no parity whose parity cycle is δ.

R2 R2

v
v1

v2
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Derived parities

Theorem

Let p be an oriented parity with coefficients in a group A on the diagrams
of the knot K. Then the formula

p′D(v) =
∑

v ′∈V(D)

pD(v ′) · (D l
v · D−v ′)

defines an oriented parity p′ with coefficients in the group Ā = A/ 〈σ(p)〉
where σ(p) =

∑
v∈V(D) sgn(v)p(v) · ip(v) ∈ A is the signature of the

parity p.

Figure: The knot 3.1. The signatures are σ(ip) = 4, σ(ip′) = 0, σ(ip′′) = 1. The
parity vectors are ip = (−1,−1, 2), ip′ = (−1, 1,−1), ip′′ = (−1, 0, 1), ip′′′ = 0.
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Derived parities. Example

Example

Consider the knots 2.1 and 4.4. Then LK0(K1) = LK0(K2) = −t−1 − t
but LK1(K1) = −2t−1 and LK1(K2) = 0 are different. Thus, the derived
index polynomials can be more sensitive than the conventional one. Here

LKn(D) = LK (ip(n))(D) =
∑

v∈V(D) : ip(n)(v)6=0

sgn(v)tsgn(v)·ip(n)(v)

is the linking invariant (odd index polynomial) of the derived parity ip(n).

Figure: The knots 2.1 and 4.4
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Open questions

1 Cohomology of biquandles generates parity cycles and parities. Is it
true that any parity can be obtained by this construction? In
particular, for a knot K describe the cohomology group H1(B(K ),A)
of the fundamental biquandle B(K ) of K .

2 Describe the colouring monodromy groups MonB(K). Which knots
have trivial monodromy? Describe the (quasi)index monodromy
groups Mon(π). Which indices π have trivial monodromy?

3 Find nontrivial examples of quasi-indices which are not indices. What
is the meaning of the index conditions on biquandle 1-cocycles?
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