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(Virtually) Algebric Fiberation

Definition
A group G virtually algebraically fibers if there is a finite index
subgroup G′ admi�ing an epimorphism G′ → Z with finitely generated
kernel.

(1962) Stallings Fibration Theorem
If G is the fundamental group of a compact, irreducible, orientable
3-manifold M and G virtually algebraic fibers then the kernel is the
fundamental group of a surface S, and the corresponding finite
cover of M is an S-bundle over a circle.

(2008) Agol- (2010) Wise-(2012)Przytycki and Wise-(2013)
Agol-(2013) Liu
With the exception of a limited class of closed graph manifolds,
every compact irreducible 3-manifold M with χ(M) = 0 does
virtually fiber.
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(Virtually) Algebric Fiberation

(2018) Kielak
A finitely generated virtually RFRS group G admits algebraic
fibration if and only if its first L2-Be�i number β(2)1 vanishes.

(2019) Agol-Stover
Congruence RFRS towers

(2017) Friedl-Viduss and (2018) Stover
Virtually algebraic fibrations of complex hyperbolic manifolds.
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(Virtually) Algebric Fiberation

In higer (especial for even) dimensions, this is not right in general.

(2017) Jankiewicz-Norin-Wise
Virtually fibering right-angled Coxeter groups.

(2021) Ma-Zheng
Algebraic fibrations of certain hyperbolic 4-manifolds with
fiber-kernels finitely generated but not finitely presented fiber
kernel. (i.e. no hope to be a 3-manifold bundle over S1)

(2021) Italiano-Martelli-Migliorini, (2021) Ba�ista-Martelli
Some cusped hyperbolic n-manifolds, 5 ≤ n ≤ 8, that fiber
algebraically. And the algebraic fibrations may be promoted to a
perfect circle-valued Morse functions.
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Finiteness Theorems

(1973) Sco�’s theorem
Finitely generated 3-manifold groups are all finitely presented
Ahlfors’ Finiteness Theorem, Sullivan’s Cusp Finiteness Theorem ect.

(1998) Kapovich
a complex hyperbolic manifold M , if π1(M) algebraic fibers, then
the fiber-kernel is not finitely presented.

? ? ? ? ?

We discuss here all possible “JNW-type" algebraic fibrations of
4-manifold that covering the right-angled hyperbolic 4-polytope P 4,
which is dual to the Gosset polytope 021.
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Right-angled Coxeter Groups

Definition
The right-angled Coxeter group C(Γ) associated to a finite simplicial
graph has finite generating set {g1, · · · gN} in one to one correspondence
with the vertex set V (Γ) = {v1, · · · vN} and has finite presentation

C(Γ) = 〈 v ∈ V (Γ) | u2 = 1, [u, v] = 1 if (u, v) ∈ E(Γ) 〉,

where E(Γ) denote the set of edges of Γ.

7 21



C(Γ) acts properly and cocompactly on a CAT(0) cube complex X̃
(Davis complex of C(Γ)).

The 1-skeleton of X̃ is isomorphic to the Cayley graph of G a�er
identifying each bigon to an edge.

n-cubes are equivariantly added to the 1-skeleton for each
collection of n pairwise commuting generators.

There is a natural abelianization epimorphism α : C(Γ)→ Z|V |2 .
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Real toric manifolds

L is a simple n-polytope with F(L) = {F1, F2, . . . , Fm}.

λ : F(L) = {F1, F2, . . . , Fm} −→ Zk
2, n ≤ k ≤ m

satisfies that 〈λ(Fi1), λ(Fi2), . . . , λ(Fin)〉 = Zn
2 when ∩Fil 6= ∅.

M(L, λ) := L× Zk
2/ ∼ is a real toric manifold over the polytope L,

(x, g1) ∼ (y, g2)⇐⇒
{
x = y and g1 = g2 if x ∈ Int L,

x = y and g−11 g2 ∈ Gf if x ∈ ∂L,

where f = Fi1 ∩ · · · ∩ Fin−r is the unique face of co-dim n− r that
x ∈ int(f) , Gf = 〈λ(Fi1), λ(Fi2), . . . , λ(Fin−r)〉.
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Example
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Bestvina-Brady Morse Theory on Cube Complexes

Definition
Suppose group Gyiso. X̃c.c.c 1 freely, cocompactly, properly. Let

φ : G→ Z be an epimorphism, and let Zytrans. R.

Say C1-map φ̃ : X̃ → R is a φ-equivariant Morse function on X̃ if:

φ̃ ◦ g = φ(g) ◦ φ̃ for all g ∈ G (equivariant condition).

∀ n-cell e ∈ X̃ with characteristic map χe : �n → X̃ ,

we have φ̃ ◦ χe : �n → R extends−−−−→ Rn → R, and φ̃ ◦ χe is constant
only for n = 0.

The φ̃(X̃(0)) is discrete in R.

1This is short for “contratible cube complex”
12 21
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Ascending / Descending Links

Given a cell e in a cube complex X̃ with χe : �e → e, w 7→ c ∈ e

χe∗ : link(w,�e)→ link(v, e) ⊂ Lk(v, X̃).

Definition
The ascending link of φ̃:
L↑ =

⋃
{χe∗(link(w,�e)) | χe∗(w) = v and φ̃χe has a min at w }

The descending link of φ̃:
L↓ =

⋃
{χe∗(link(w,�e)) | χe∗(w) = v and φ̃χe has a max at w }

13 21
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Bestvina-Brady Morse Theory on Cube Complexes

Theorem (Bestvina-Brady: 1997; Brady: 1999)

Let φ̃ : X̃ → R be a φ-equivariant Morse function and let H = Ker(φ)
be as above.

Suppose the reduced homology of each L↑ and each L↓ is
homological n-connected. Then H ∈ FHn+1.

Suppose the reduced homology of each link↑ and each link↓ is zero
in all dimension 0 through n+1, except for dimension n. Then H is
of type FPn but is not of type FPn+1.

If all L↑s and L↓s are simply connected, then H is finitely presented.
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supplimentary

F1⇔ finitely generated; F2⇔ finitely presented

FH1(R) for all R⇔ F1

Fn ⇒ FHn ⇒ FPn

15 21



Jankiewicz-Norin-Wise Admissible System

Let Γ = Γ(V,E) be a simplicial graph with vertices V and edges E.

A state of Γ is a subset S ⊂ V .

The state is legal if ΓS and ΓV−S are both nonempty and
connected.
A move at v ∈ V is an element mv ∈ 2V satisfying:

1. v ∈ mv .
2. u 6∈ mv if {u, v} ∈ E.

A move system is a choice mv of a move for each v ∈ V .

Identify ZV
2 with 2V

The system is legal if there is an M -orbit all of whose elements are
legal states. The M -orbit is called as a legal orbit. Refer such pair of
move system and state as an admissible system.

16 21
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Theorem (Jankiewicz-Norin-Wise: 2019)

Let Γ be a finite graph. Suppose there is a move system m : V → 2V

with a legal orbit. Then there is a discrete Morse function φ̃ : X̃ → R
whose ascending and descending links are non-empty and connected.
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Hyperbolic right-angled polytope P 4

Figure 1: Figures are from L. Potyagailo-E. Vinberg (2005)

facets ideal finite Isom(P 4) orbit χ volume
P 4 10 5 5 A4 1/16 π2/12
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Results

We search all the “JNW-type" algebraic fibration over P 4

| move system | 5 6 7 8 9 10
rare move systems 6 90 145 75 15 1
factoring Isom(P 4) 12 2 4 2 1 1

legal state [1+(5)] [1]+[1+1] 4×[0] 2×[0] [0] [0]

2This is found by Italiano-Matelli-Migliorini (2021)
20 21



Ongoing

• “Di�erent” algebraic fibrations of a given n- manifold, where n ≥ 4.

Definition (2011 D. Calegari-H. Sun-S. Wang)

A fibered pair (M̃, F̃) covers (M,F) if there is a finite covering of
manifolds π : M̃ →M such that π−1(F) is isotopic to F̃.

Two fibered pairs (M1,F1) and (M2,F2) are commensurable if there is a
third fibered pair (M̃, F̃) that covers both.

• Σ-invariant of fundamental group of high-dimensional hyperbolic
manifolds
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Thank You for your listening!
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