Algebraic Fibrations of Certain Hyperbolic 4-Manifolds

Fangting ZHENG 1 $\,$ (joint work with Jiming MA $)^2$

Xi'an-Jiaotong Liverpool University, Suzhou, China
 Fudan University, Shanghai, China

Russian-Chinese Conference on Knot Theory and Related Topics $24^{\text{TH}}{-}26^{\text{TH}}$ December 2021

http://labtd.nsu.ru/8RCCKT/index.html

1 Background

- 2 Manifolds Constructed via Colored Right-angled Polytopes
- 3 Algebraic fibration

4 our work

(VIRTUALLY) ALGEBRIC FIBERATION

Definition

A group *G* virtually algebraically fibers if there is a finite index subgroup *G'* admitting an epimorphism $G' \to \mathbb{Z}$ with finitely generated kernel.

(VIRTUALLY) ALGEBRIC FIBERATION

Definition

A group G virtually algebraically fibers if there is a finite index subgroup G' admitting an epimorphism $G' \to \mathbb{Z}$ with finitely generated kernel.

(1962) Stallings Fibration Theorem

If G is the fundamental group of a compact, irreducible, orientable 3-manifold M and G virtually algebraic fibers then the kernel is the fundamental group of a surface S, and the corresponding finite cover of M is an S-bundle over a circle.

(VIRTUALLY) ALGEBRIC FIBERATION

Definition

A group G virtually algebraically fibers if there is a finite index subgroup G' admitting an epimorphism $G' \to \mathbb{Z}$ with finitely generated kernel.

(1962) Stallings Fibration Theorem

If G is the fundamental group of a compact, irreducible, orientable 3-manifold M and G virtually algebraic fibers then the kernel is the fundamental group of a surface S, and the corresponding finite cover of M is an S-bundle over a circle.

 (2008) Agol- (2010) Wise-(2012)Przytycki and Wise-(2013) Agol-(2013) Liu

With the exception of a limited class of closed graph manifolds, every compact irreducible 3-manifold M with $\chi(M) = 0$ does virtually fiber.

(2018) Kielak

A finitely generated virtually RFRS group G admits algebraic fibration if and only if its first L^2 -Betti number $\beta_1^{(2)}$ vanishes.

(2018) Kielak

A finitely generated virtually RFRS group G admits algebraic fibration if and only if its first L^2 -Betti number $\beta_1^{(2)}$ vanishes.

(2019) Agol-Stover
 Congruence RFRS towers

(2018) Kielak

A finitely generated virtually RFRS group G admits algebraic fibration if and only if its first L^2 -Betti number $\beta_1^{(2)}$ vanishes.

(2019) Agol-Stover
 Congruence RFRS towers

(2017) Friedl-Viduss and (2018) Stover
 Virtually algebraic fibrations of complex hyperbolic manifolds.

In higer (especial for even) dimensions, this is not right in general.

■ (2017) Jankiewicz-Norin-Wise Virtually fibering right-angled Coxeter groups. In higer (especial for even) dimensions, this is not right in general.

- (2017) Jankiewicz-Norin-Wise Virtually fibering right-angled Coxeter groups.
- (2021) Ma-Zheng

Algebraic fibrations of certain hyperbolic 4-manifolds with fiber-kernels finitely generated but not finitely presented fiber kernel. (i.e. no hope to be a 3-manifold bundle over S^1)

In higer (especial for even) dimensions, this is not right in general.

- (2017) Jankiewicz-Norin-Wise
 Virtually fibering right-angled Coxeter groups.
- (2021) Ma-Zheng

Algebraic fibrations of certain hyperbolic 4-manifolds with fiber-kernels finitely generated but not finitely presented fiber kernel. (i.e. no hope to be a 3-manifold bundle over S^1)

■ (2021) Italiano-Martelli-Migliorini, (2021) Battista-Martelli Some cusped hyperbolic *n*-manifolds, 5 ≤ *n* ≤ 8, that fiber algebraically. And the algebraic fibrations may be promoted to a perfect circle-valued Morse functions.

■ (1973) Scott's theorem

Finitely generated 3-manifold groups are all finitely presented *Ahlfors' Finiteness Theorem, Sullivan's Cusp Finiteness Theorem* ect.

(1973) Scott's theorem

Finitely generated 3-manifold groups are all finitely presented *Ahlfors' Finiteness Theorem, Sullivan's Cusp Finiteness Theorem* ect.

(1998) Kapovich

a complex hyperbolic manifold M, if $\pi_1(M)$ algebraic fibers, then the fiber-kernel is not finitely presented.

(1973) Scott's theorem

Finitely generated 3-manifold groups are all finitely presented *Ahlfors' Finiteness Theorem, Sullivan's Cusp Finiteness Theorem* ect.

(1998) Kapovich

a complex hyperbolic manifold M, if $\pi_1(M)$ algebraic fibers, then the fiber-kernel is not finitely presented.

(1973) Scott's theorem

Finitely generated 3-manifold groups are all finitely presented *Ahlfors' Finiteness Theorem, Sullivan's Cusp Finiteness Theorem* ect.

(1998) Kapovich

a complex hyperbolic manifold M, if $\pi_1(M)$ algebraic fibers, then the fiber-kernel is not finitely presented.

We discuss here all possible "JNW-type" algebraic fibrations of 4-manifold that covering the right-angled hyperbolic 4-polytope P^4 , which is dual to the Gosset polytope 0_{21} .

1 Background

Manifolds Constructed via Colored Right-angled Polytopes
 Right-angled Coxeter Groups
 Real toric manifolds

3 Algebraic fibration

4 our work

The **right-angled Coxeter group** $C(\Gamma)$ associated to a finite simplicial graph has finite generating set $\{g_1, \dots, g_N\}$ in one to one correspondence with the vertex set $V(\Gamma) = \{v_1, \dots, v_N\}$ and has finite presentation

$$C(\Gamma) = \langle v \in V(\Gamma) \mid u^2 = 1, \ [u, v] = 1 \text{ if } (u, v) \in E(\Gamma) \rangle,$$

where $E(\Gamma)$ denote the set of edges of Γ .

 C(Γ) acts properly and cocompactly on a CAT(0) cube complex X
 (Davis complex of C(Γ)).

- C(Γ) acts properly and cocompactly on a CAT(0) cube complex X
 (Davis complex of C(Γ)).
- The <u>1-skeleton</u> of \widetilde{X} is isomorphic to the Cayley graph of *G* after identifying each bigon to an edge.

<u>*n*-cubes</u> are equivariantly added to the 1-skeleton for each collection of n pairwise commuting generators.

- C(Γ) acts properly and cocompactly on a CAT(0) cube complex X
 (Davis complex of C(Γ)).
- The <u>1-skeleton</u> of *X* is isomorphic to the Cayley graph of *G* after identifying each bigon to an edge.

<u>*n*-cubes</u> are equivariantly added to the 1-skeleton for each collection of n pairwise commuting generators.

There is a natural abelianization epimorphism $\alpha : C(\Gamma) \to \mathbb{Z}_2^{|V|}$.

L is a simple *n*-polytope with $\mathcal{F}(L) = \{F_1, F_2, \dots, F_m\}$.

$$\lambda: \mathcal{F}(L) = \{F_1, F_2, \dots, F_m\} \longrightarrow \mathbb{Z}_2^k, n \le k \le m$$

satisfies that $\langle \lambda(F_{i_1}), \lambda(F_{i_2}), \dots, \lambda(F_{i_n}) \rangle = \mathbb{Z}_2^n$ when $\cap F_{i_l} \neq \emptyset$.

 $M(L,\lambda):=L imes \mathbb{Z}_2^k/\sim$ is a real toric manifold over the polytope L,

$$(x,g_1) \sim (y,g_2) \iff \begin{cases} x = y \text{ and } g_1 = g_2 & \text{if } x \in \text{Int } L, \\ x = y \text{ and } g_1^{-1}g_2 \in G_f & \text{if } x \in \partial L, \end{cases}$$

where $f = F_{i_1} \cap \cdots \cap F_{i_{n-r}}$ is the unique face of co-dim n-r that $x \in int(f)$, $G_f = \langle \lambda(F_{i_1}), \lambda(F_{i_2}), \dots, \lambda(F_{i_{n-r}}) \rangle$.

Example

1 Background

2 Manifolds Constructed via Colored Right-angled Polytopes

3 Algebraic fibration

- Bestvina-Brady Morse Theory on Cube Complex
- Jankiewicz-Norin-Wise Admissible System

4 our work

Suppose group $G \curvearrowright^{\text{iso.}} \widetilde{X}^{\text{c.c. 1}}$ freely, cocompactly, properly. Let $\phi: G \to \mathbb{Z}$ be an epimorphism, and let $\mathbb{Z} \curvearrowright^{\text{trans.}} \mathbb{R}$. Say C^1 -map $\widetilde{\phi}: \widetilde{X} \to \mathbb{R}$ is a ϕ -equivariant Morse function on \widetilde{X} if:

Suppose group $G \curvearrowright^{\text{iso.}} \widetilde{X}^{\text{c.c. 1}}$ freely, cocompactly, properly. Let $\phi: G \to \mathbb{Z}$ be an epimorphism, and let $\mathbb{Z} \curvearrowright^{\text{trans.}} \mathbb{R}$. Say C^1 -map $\widetilde{\phi}: \widetilde{X} \to \mathbb{R}$ is a ϕ -equivariant Morse function on \widetilde{X} if:

• $\widetilde{\phi} \circ g = \phi(g) \circ \widetilde{\phi}$ for all $g \in G$ (equivariant condition).

¹This is short for "contratible cube complex"

Suppose group $G \curvearrowright^{\text{iso.}} \widetilde{X}^{\text{c.c. 1}}$ freely, cocompactly, properly. Let $\phi: G \to \mathbb{Z}$ be an epimorphism, and let $\mathbb{Z} \curvearrowright^{\text{trans.}} \mathbb{R}$. Say C^1 -map $\widetilde{\phi}: \widetilde{X} \to \mathbb{R}$ is a ϕ -equivariant Morse function on \widetilde{X} if:

- $\widetilde{\phi} \circ g = \phi(g) \circ \widetilde{\phi}$ for all $g \in G$ (equivariant condition).
- $\forall n\text{-cell } e \in \widetilde{X} \text{ with characteristic map } \chi_e : \Box^n \to \widetilde{X},$ we have $\widetilde{\phi} \circ \chi_e : \Box^n \to \mathbb{R} \xrightarrow{\text{extends}} \mathbb{R}^n \to \mathbb{R}, \text{ and } \widetilde{\phi} \circ \chi_e \text{ is constant}$ only for n = 0.

¹This is short for "contratible cube complex"

Suppose group $G \curvearrowright^{\text{iso.}} \widetilde{X}^{\text{c.c. 1}}$ freely, cocompactly, properly. Let $\phi: G \to \mathbb{Z}$ be an epimorphism, and let $\mathbb{Z} \curvearrowright^{\text{trans.}} \mathbb{R}$. Say C^1 -map $\widetilde{\phi}: \widetilde{X} \to \mathbb{R}$ is a ϕ -equivariant Morse function on \widetilde{X} if:

- $\widetilde{\phi} \circ g = \phi(g) \circ \widetilde{\phi}$ for all $g \in G$ (equivariant condition).
- $\forall n\text{-cell } e \in \widetilde{X} \text{ with characteristic map } \chi_e : \Box^n \to \widetilde{X},$ we have $\widetilde{\phi} \circ \chi_e : \Box^n \to \mathbb{R} \xrightarrow{\text{extends}} \mathbb{R}^n \to \mathbb{R}, \text{ and } \widetilde{\phi} \circ \chi_e \text{ is constant}$ only for n = 0.
- The $\widetilde{\phi}(\widetilde{X}^{(0)})$ is discrete in \mathbb{R} .

¹This is short for "contratible cube complex"

Given a cell e in a cube complex \widetilde{X} with $\chi_e : \Box_e \to e, w \mapsto c \in e$ $\chi_{e^*} : link(w, \Box_e) \to link(v, e) \subset Lk(v, \widetilde{X}).$

Given a cell e in a cube complex \widetilde{X} with $\chi_e: \Box_e \to e, w \mapsto c \in e$

 $\chi_{e^*}: link(w, \Box_e) \to link(v, e) \subset Lk(v, \widetilde{X}).$

Definition

The ascending link of ϕ : $L_{\uparrow} = \bigcup \{ \chi_{e^*}(link(w, \Box_e)) \mid \chi_{e^*}(w) = v \text{ and } \widetilde{\phi}\chi_e \text{ has a min at } w \}$ The descending link of $\widetilde{\phi}$: $L_{\downarrow} = \bigcup \{ \chi_{e^*}(link(w, \Box_e)) \mid \chi_{e^*}(w) = v \text{ and } \widetilde{\phi}\chi_e \text{ has a max at } w \}$

Let $\widetilde{\phi}: \widetilde{X} \to \mathbb{R}$ be a ϕ -equivariant Morse function and let $H = Ker(\phi)$ be as above.

Let $\phi : \tilde{X} \to \mathbb{R}$ be a ϕ -equivariant Morse function and let $H = Ker(\phi)$ be as above.

Suppose the reduced homology of each L_↑ and each L_↓ is homological *n*-connected. Then H ∈ FH_{n+1}.

Let $\phi: \tilde{X} \to \mathbb{R}$ be a ϕ -equivariant Morse function and let $H = Ker(\phi)$ be as above.

- Suppose the reduced homology of each L_↑ and each L_↓ is homological *n*-connected. Then H ∈ FH_{n+1}.
- Suppose the reduced homology of each link_↑ and each link_↓ is zero in all dimension 0 through n+1, except for dimension n. Then H is of type FP_n but is not of type FP_{n+1}.

Let $\phi : \tilde{X} \to \mathbb{R}$ be a ϕ -equivariant Morse function and let $H = Ker(\phi)$ be as above.

- Suppose the reduced homology of each L_↑ and each L_↓ is homological *n*-connected. Then H ∈ FH_{n+1}.
- Suppose the reduced homology of each link_↑ and each link_↓ is zero in all dimension 0 through n+1, except for dimension n. Then H is of type FP_n but is not of type FP_{n+1}.

If all $L_{\uparrow}s$ and $L_{\downarrow}s$ are simply connected, then *H* is finitely presented.

- $F_1 \Leftrightarrow$ finitely generated; $F_2 \Leftrightarrow$ finitely presented
- $FH_1(R)$ for all $R \Leftrightarrow F_1$
- $\bullet F_n \Rightarrow FH_n \Rightarrow FP_n$

Let $\Gamma = \Gamma(V, E)$ be a simplicial graph with vertices V and edges E. • A state of Γ is a subset $S \subset V$. Let $\Gamma = \Gamma(V, E)$ be a simplicial graph with vertices V and edges E.

- A state of Γ is a subset $S \subset V$.
- The state is legal if Γ_S and Γ_{V-S} are both nonempty and connected.

Let $\Gamma = \Gamma(V, E)$ be a simplicial graph with vertices V and edges E.

- A state of Γ is a subset $S \subset V$.
- The state is legal if Γ_S and Γ_{V-S} are both nonempty and connected.
- A move at $v \in V$ is an element $m_v \in 2^V$ satisfying:
 - 1. $v \in m_v$. 2. $u \notin m_v$ if $\{u, v\} \in E$.
- A move system is a choice m_v of a move for each $v \in V$. Identify \mathbb{Z}_2^V with 2^V
- The system is legal if there is an *M*-orbit all of whose elements are legal states. The *M*-orbit is called as a legal orbit. Refer such pair of move system and state as an admissible system.

Theorem (Jankiewicz-Norin-Wise: 2019)

Let Γ be a finite graph. Suppose there is a move system $m: V \to 2^V$ with a legal orbit. Then there is a discrete Morse function $\tilde{\phi}: \tilde{X} \to \mathbb{R}$ whose ascending and descending links are non-empty and connected.

1 Background

- 2 Manifolds Constructed via Colored Right-angled Polytopes
- 3 Algebraic fibration

4 our work

Hyperbolic right-angled polytope P^4

Figure 1: Figures are from L. Potyagailo-E. Vinberg (2005)

	facets	ideal	finite	$Isom(P^4)$	orbit χ	volume
P^4	10	5	5	A_4	1/16	$\pi^2/12$

19

We search all the "JNW-type" algebraic fibration over P^4

move system	5	6	7	8	9	10
rare move systems	6	90	145	75	15	1
factoring $lsom(P^4)$	1 ²	2	4	2	1	1
legal state	[1+(5)]	[1]+[1+1]	4×[0]	2×[0]	[0]	[0]

		[1, [1,		4, 4]				4, 1	6]		6]		6]	
	[[1, 8], [2, 7], [3, 9], [4, 6], [5], [10]] [[1, 10], [2, 7], [3, 9], [4, 5], [6], [8]]	[1, [1,												
	[11], [2], [3], [4], [5, 10], [6, 9], [7, 8]] [11], [2, 6], [3], [4], [5, 10], [7, 8], [9]] [11, 8], [2], [3, 7], [4], [5], [5, 9], [10]] [11, 9], [2, 6], [3], [5], [7, 9], [10]]													
	[[1], [2], [3], [4, 8], [5, 10], [6], [7], [9]] [[1, 10], [2], [3, 7], [4], [5], [6], [6], [8], [9]]													
10	[[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]]													

²This is found by Italiano-Matelli-Migliorini (2021)

20

• "Different" algebraic fibrations of a given n- manifold, where $n \ge 4$.

Definition (2011 D. Calegari-H. Sun-S. Wang)

A fibered pair $(\widetilde{M}, \widetilde{\mathbb{F}})$ covers (M, \mathbb{F}) if there is a finite covering of manifolds $\pi : \widetilde{M} \to M$ such that $\pi^{-1}(\mathbb{F})$ is isotopic to $\widetilde{\mathbb{F}}$.

Two fibered pairs (M_1, \mathbb{F}_1) and (M_2, \mathbb{F}_2) are commensurable if there is a third fibered pair $(\widetilde{M}, \widetilde{\mathbb{F}})$ that covers both.

• "Different" algebraic fibrations of a given n- manifold, where $n \ge 4$.

Definition (2011 D. Calegari-H. Sun-S. Wang)

A fibered pair $(\widetilde{M}, \widetilde{\mathbb{F}})$ covers (M, \mathbb{F}) if there is a finite covering of manifolds $\pi : \widetilde{M} \to M$ such that $\pi^{-1}(\mathbb{F})$ is isotopic to $\widetilde{\mathbb{F}}$.

Two fibered pairs (M_1, \mathbb{F}_1) and (M_2, \mathbb{F}_2) are commensurable if there is a third fibered pair $(\widetilde{M}, \widetilde{\mathbb{F}})$ that covers both.

 \bullet $\Sigma\text{-invariant}$ of fundamental group of high-dimensional hyperbolic manifolds

THANK YOU FOR YOUR LISTENING!