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Introduction

The fundamental question in Knot theory is, when two given knot diagrams
are equivalent? The two knot diagrams D and D ′ are equivalent if and
only if D can be transformed to D ′ using generalized Reidemeister moves.
However, it is not easy to show the equivalence of two knot diagrams by
Reidemeister moves. Therefore, we need a knot invariant to show either
two knot diagrams are equivalent or not.

R − I R − II
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Introduction

R − III MR

VR − I VR − II VR − III
Figure 1: Generalized Reidemeister moves.

Ali, Yang and Lei KNOT INVARIANTS WITH MULTIPLE SKEIN RELATIONS CONTAINING VIRTUAL CROSSINGS



Introduction

Figure 2: The skein relation of Kauffmann polynomial

Figure 3: The skein relation ofJones polynomial

Those well-know knot invariants has only one skein relation, and the skein
relation has three terms.
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Introduction

W E

N

S
E− EV

The symbols E , S ,W ,N denote the cardinal directions, east, south, west,
and north. The + or − sign in the subscript is representing the positive
crossing or negative crossing. For example, E− means the middle of the
two arrows points toward the east direction, and it is a negative crossing.
Similarly, EV means the middle of the two arrows points toward the east
direction, and the crossing is a virtual crossing.
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Introduction

Classical crossing (+) Classical crossing (-) Virtual crossing

Figure 4: The classical and virtual crossings

Crossing virtualization is a local move on a classical crossing that
change the classical crossing into the virtual crossing.

Virtualizing all classical crossings converts a knot into the unknot.

Virtualization reduces the number of classical crossings.

Since virtualizing or smothing a classical crossings reduces the number of
classical crossings, therefore, we used a system of skein relations that either
smooth a classical crossing or replace it with the virtual crossing.
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Introduction

We use a system of skein equations to construct a knot invariant, each skein
equation has six or eight terms. The multiple skein relations use new ways
to smooth or virtualize a crossing.
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Theorem 1

Theorem

For oriented link diagrams, there is a link invariant f with values in X and
satisfies the following skein relations: If the two arcs in the local diagram
are from the same link component, then

f (E+) = −{c1f (E ) + c2f (W ) + c3f (HC ) + c4f (HT ) + d1f (VC ) + d2f (VT ) + ef (EV )}

f (E−) = −{c1f (E ) + c2f (W ) + c3f (HC ) + c4f (HT ) + d1f (VC ) + d2f (VT ) + ef (EV )}

If the two arcs are from different components, then

f (E+) = −{c ′1f (E ) + c ′2f (W ) + d ′1f (S) + d ′2f (N) + e ′f (EV )}

f (E−) = −{c ′1f (E ) + c ′2f (W ) + d
′
1f (S) + d

′
2f (N) + e ′f (EV )}

Here X denote the quotient commutative ring and R = R1 ∪ R2 ∪ R3.

Z [c1, c2, c3, c4, d1, d2, c1, c2, c3, c4, d1, d2, c
′
1, c
′
2, d
′
1, d
′
2, c
′
1, c
′
2, d
′
1, d
′
2, z(n,k)]/R.
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What’s New and Interesting?

(a) K11n73 (b) K11n74

Is it only another complicated invariant?

Is there any relation with existing invariants?

Both Kauffman two-variable polynomial and HOMFLY polynomial
can not distinguish the K11n73 and K11n74, but our invariant can
distinguish K11n73 and K11n74 clearly and very easily.
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Freedom of resolving crossing order

A

B

The first crossing p

C

D

The second crossing q

Figure 6: The label of two crossings (both are positive crossings)

For two classical crossings, there must be at most four arcs. Denote them
by A, B, C , and D. The arrow of each arc represent the orientation of the
link component. If more than one arc is from the same link component,
we write them together. For example, the three arcs A,B and D are from
the same link component, such that A→ B → D along the link orientation
and C is another component, then we donate this information as (ABD,C ).
There are several ways to join these arcs, therefore, we have many possible
cases.
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Case 1

c ′2d
′
1 = d

′
1c
′
2, c ′2c

′
2 = d

′
1d
′
2,

d ′2d
′
1 = c ′2c

′
2, d ′2c

′
2 = c ′2d

′
2,

c ′1c
′
2 + c ′2d

′
2 = c ′2c

′
1 + d

′
2c
′
2,

c ′1d
′
2 + c ′2c

′
1 = c ′2d

′
1 + d

′
2d
′
2,

d ′1c
′
2 + d ′2d

′
2 = d ′2c

′
1 + c ′1c

′
2,

d ′1d
′
2 + d ′2c

′
1 = d ′2d

′
1 + c ′1d

′
2,

d ′2e
′ = d ′2e

′, e ′c ′2 = e ′c ′2,
e ′d ′2 = e ′d ′2, c ′2e

′ = c ′2e
′.

AC

B

D

p

q

Figure 7: CASE (AC ,B,D)
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Case 2

c ′1c1 + c ′2c2 = c1c
′
1 + c2c

′
2,

c ′1c2 + c ′2c1 = c2c
′
1 + c1c

′
2,

d ′2c1 + d ′1c2 = c1d
′
2 + c2d

′
1,

d ′2c2 + d ′1c1 = c2d
′
2 + c1d

′
1,

c ′1c4 + c ′2c4 = c3c
′
1 + c3c

′
2,

c ′1d1 + c ′2d1 = d1d
′
2 + d1d

′
1,

c ′1c3 + c ′2c3 = c4c
′
1 + c4c

′
2,

c ′1d2 + c ′2d2 = d2d
′
2 + d2d

′
1,

d ′2d1 + d ′1d1 = d1c
′
1 + d1c

′
2,

d ′2c4 + d ′1c4 = c3d
′
2 + c3d

′
1,

d ′2d2 + d ′1d2 = d2c
′
1 + d2c

′
2,

d ′2c3 + d ′1c3 = c4d
′
2 + c4d

′
1,

e ′c ′1 = ec ′1, e ′c ′2 = ec ′2,
e ′d ′2 = ed ′2,e ′d ′1 = ed ′1,
c ′1e = c ′1e

′,c ′2e = c ′2e
′,

d ′2e = d ′2e
′,d ′1e = d ′1e

′.

AC

BD

p

q

Figure 8: CASE (AC ,BD)
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Case 3

c4d
′
1 = c2c

′
2, c4c2

′ = c2d
′
2,

c2d
′
2 + c3c

′
2 = c1c

′
2 + c2c

′
1,

c2c1
′ + c3d

′
2 = c1d

′
2 + c2d

′
1,

c2d
′
1 = c3c

′
2, c2c2

′ = c3d
′
2,

c4d
′
2 + c1c

′
2 = c4c

′
2 + c4c

′
1,

c4c1
′ + c1d

′
2 = c4d

′
2 + c4d

′
1,

d1d
′
2 + d2c

′
2 = d1c

′
2 + d1c

′
1,

d1c1
′ + d2d

′
2 = d1d

′
1 + d1d

′
2,

d1e
′ = d1e

′, d1d
′
1 = d2c

′
2,

d1c2
′ = d2d

′
2,c2e

′ = c2e
′,

c4e
′ = c4e

′.

ABC

D

p

q

Figure 9: CASE (ABC ,D)
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Case 4

Figure 10: CASE (ACBD)

c4d
′
2 + c3d

′
1 + c2c

′
2 + c1c

′
1 = d

′
2c3 + d

′
1c4 +

c ′2c2 + c ′1c1, c4d
′
1 + c3d

′
2 + c2c

′
1 + c1c

′
2 =

d
′
1c3 + d

′
2c4 + c ′2c1 + c ′1c2, d1c4 + d2c4 =

c1d2 + c2d1, d1c3 + d2c3 = c1d1 + c2d2,
d2d2 + d1d2 = c1

′c4 + c2
′c3 + d ′1c2 + d ′2c1,

d2d1 + d1d1 = c1
′c3 + c2

′c4 + d ′2c2 + d ′1c1,
c3c1

′+ c4c2
′+ c2d

′
2 + c1d

′
2 = d1d2 + d1d1,

c4c1
′+ c3c2

′+ c2d
′
1 + c1d

′
1 = d2d2 + d2d1,

d1c1 + d2c2 = c3d1 + c3d2,d1e = d1e,
d2c1+d1c2 = c4d1+c4d2,d2e = d2e,ec1 =
e ′c1,ec2 = e ′c2,ec4 = e ′c4, ed1 =
ed1,ec3 = e ′c3,ed2 = ed2,c1e

′ = c1e,c2e
′ = c2e,c3e

′ = c3e,c4e
′ = c4e.
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Case 5

c3c2 = c2c4,c3c3 = c2c2,
c2c1 + c4c2 = c1c2 + c2c3,
c2c4 + c4c4 = c1c4 + c2c1,
c2d1 + c4d1 = c1d1 + c2d2,
c3c1 + c1c2 = c3c2 + c3c3,
c1c4 = c3c1, c1d1 = c3d2,
c2c2 = c4c4,c2c3 = c4c2,
c2d2 = c4d1,d2c2 = d1c4,
d2c3 = d1c2,d2d2 = d1d1,
d2c1 + d1c2 = d2c2 + d2c3,
d1c4 = d2c1,c3d2 = c2d1.

ACDB

p

q

Figure 11: CASE (ACDB)
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The complete set of relations

Suppose D has at least two classical crossings p and q, and both of them
are positive crossings. First we resolve D at p, then we get many diagrams
D1,D2, · · · . We resolve each Di at q, then we get the linear sum. On the
other hand, if we resolve D at q first, we get many diagrams D ′1,D

′
2, · · · .

We resolve each D ′i at p, and then we get the linear sum. By the induction
hypothesis fpq = fqp.

The set of all above relations is called the complete set of relations and
denoted by R1 therefor

R1 = {The complete set of above relations}.

If the variables satisfy the relations in R1, then fpq(D) = fqp(D)
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Index pair and definition of invariant

The index pair (c , k) and induction on this index pair is used to prove
the theorem. Here c denote the number of classical crossings and k
denote the number of virtual crossings of the diagram.

Let f (E+) = −c ′1f (E )− c ′2f (W )− d ′1f (S)− d ′2f (N)− e ′f (EV ) then
the diagram E+ has index (c, k), and all diagrams on the right-hand
side has c − 1 classical crossings.

Let S(c , k) denote the set of all oriented link diagrams with indices
≤ (c , k). Note that S(0, 0) is the set of trivial diagrams.

If the diagram D has index (0, 0) then it is the trivial diagram with n
components. The value for the trivial n-component link is denoted by
z(n,0). If the diagram D has index (0, k) then it is the trivial diagram
with n components and k virtual crossings. The value for the
n-component link with only k virtual crossings is denoted by z(n,k).
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f (D) is invariant under generalized Reidemeister moves

Classical Reidemeister Move-I

Let two diagrams D and D ′ are differed by a R-I.

We can assume that there is no other classical crossing except R − I .
If there is any other classical crossing then by induction we can
reduced to the case that there is no other classical crossing.

Since D has no classical crossing, therefore, D has index (0, k) and
f (D) = z(n,k).

The value of two diagrams D and D ′ is equal if and only if the
following equations are always true; If the crossing is positive, then
z(n,k) = −(c1 + c2 + c3 + c4)z(n+1,k) − (d1 + d2)z(n,k) − ez(n,k+1).
If the crossing is negative, then
z(n,k) = −(c1 + c2 + c3 + c4)z(n+1,k) − (d1 + d2)z(n,k) − ez(n,k+1).
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Classical Reidemeister Move-II

Suppose given two diagrams D and D ′ are differed by a R-II. Like above
we can assume that there is no other classical crossing except R − II .
Since D has no classical crossing, therefor f (D) = z(n,k). Now we resolve
both p and q using our skein relation. The orientation of components is
such that the crossing p is positive, and the two arcs are from different
link components, then resolve at p we get

f (E+) = −c ′1f (E )− c ′2f (W )− d ′1f (S)− d ′2f (N)− e ′f (EV )

Now each diagram on the right-hand side of this equation has only one
classical crossing q, so we again apply skein relation. After applying skein
relation at q we get

z(n,k) = −(c ′1 + c ′2 + d ′1 + d ′2)z(n−1,k) + e ′{(c ′1 + c ′2 + d
′
1 + d

′
2)z(n−1,k+1) + e ′z(n,k+2)}

Similarly, if we resolve first q, then p we get the following equation

z(n,k) = −(c ′1 + c ′2 + d
′
1 + d

′
2)z(n−1,k) + e ′{(c ′1 + c ′2 + d ′1 + d ′2)z(n−1,k+1) + e ′z(n,k+2)}
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Classical Reidemeister Move-III

r

pq

6

41

5

3
2

r ′

p′ q′
6′

4′1′

5′

3′2′

Figure 12: Classical Reidemeister move-III

Inside each disk there are three arcs and ends of these arcs are attached
with the boundary of disk, there are fifteen possibilities to connect these
end points with each other.
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Figure 13: Two diagrams differed by R-III

Except one set of diagrams in Fig.13 all other D and D ′ are either
same diagrams or both D and D ′ can be transformed into the trivial
diagrams using the R-I and R-II.
For D and D ′ in Fig.13 if r is the intersection of arc m (middle) and
b (bottom), then we resolve D at r and we get many new diagrams
D1 ,D2 · · · similarly, we resolve D ′ at r ′ and get many new link
diagrams D ′1, D ′2, · · · .
Each Di is resembling to D ′i therefor for those diagrams we have
f (Di ) = f (D ′i ). By induction hypothesis and the skein equation we
get f (D) = f (D ′).
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Mixed Reidemeister Move

p

p′

Figure 14: Mixed Reidemeister move

If we resolve D at point p we will get the linear combination of the trivial
diagrams D1,D2, · · ·Dn. Similarly, if we resolve D ′ at point p′ we will get
the linear combination of the trivial diagrams D ′1,D

′
2, · · ·D ′n. Each Di is

resembling to D ′i for those diagrams, we have f (Di ) = f (D ′i ), therefor, by
the skein equation f (D) = f (D ′).
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Virtual Reidemeister Moves

Suppose two diagrams D and D ′ are differed by a virtual Reidemeister
moves.

Since D is the trivial diagram, therefore f (D) = z(n,k).

If D ′ is the diagram with only virtual Reidemeister move-I then the
value of D ′ is f (D ′) = z(n,k+1).

Similarly, If D ′ is the diagram with only virtual Reidemeister move-II
then the value of D ′ is f (D ′) = z(n,k+2).

If the two diagrams D and D ′ are differed by the virtual Reidemeister
move-III then f (D) = z(n,k+3) = f (D ′).

The virtual Reidemeister moves invariance is guaranteed if and only if
z(n,k) = z(n,k+1).
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The set of complete equations

If the following equations are always true, then our function f (D) is
invariant under classical Reidemeister moves. The set of these equations is
denoted by R2.

z(n,k) = −(c1 + c2 + c3 + c4)z(n+1,k) − (d1 + d2)z(n,k) − ez(n,k+1)

z(n,k) = −(c1 + c2 + c3 + c4)z(n+1,k) − (d1 + d2)z(n,k) − ez(n,k+1)

z(n,k) = −(c ′1 + c ′2 + d ′1 + d ′2)z(n−1,k) + e ′{(c ′1 + c ′2 + d
′
1 + d

′
2)z(n−1,k+1) + e ′z(n,k+2)}

z(n,k) = −(c ′1 + c ′2 + d
′
1 + d

′
2)z(n−1,k) + e ′{(c ′1 + c ′2 + d ′1 + d ′2)z(n−1,k+1) + e ′z(n,k+2)}

R2 = {The set of above equations}.

Similarly, f (D) is invariant under virtual Reidemeister moves, if the
following equation is always true. This equation is denoted by R3.

R3 = {z(n,k) = z(n,k+1)} n ≥ 1 and k ≥ 0
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Theorem

For oriented link diagrams, there is a link invariant f with values in Xc and
satisfies the following skein relations: If the two arcs in the local diagram
are from the same link component, then

f (E+) = c1f (E ) + c2f (W ) + c3f (HC ) + c4f (HT ) + d1f (VC ) + d2f (VT ) + ef (EV )

f (E−) = c1f (E ) + c2f (W ) + c3f (HC ) + c4f (HT ) + d1f (VC ) + d2f (VT ) + ef (EV )

If the two arcs are from different components, then

f (E+) = c ′1f (E ) + c ′2f (W ) + d ′1f (S) + d ′2f (N) + e ′f (EV )

f (E−) = c ′1f (E ) + c ′2f (W ) + d
′
1f (S) + d

′
2f (N) + e ′f (EV )

For any trivial link diagram with n components, f (D) = z(n,k) and
Rc = R1 ∪ R2.

Xc = Z [c1, c2, c3, c4, d1, d2, c1, c2, c3, c4, d1, d2, c
′
1, c
′
2, d
′
1, d
′
2, c
′
1, c
′
2, d
′
1, d
′
2, zn]/Rc
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Reduction of Coefficients by Diamond Lemma

b c

a

d

The Newman’s Diamond lemma is described as bi-
nary relation → on set S with the following two
properties

1 A chain is a
sequence of elements x1, x2, x3, · · · ∈ S such
that x1 →x2 →x3 · · · →xn. A chain is called
terminating if it has finite length. All the
possible chains on S should be terminating.

2 For all, a, b, c , d ∈ S if there exist two
possible ways to rewrite a such that a → b and a → c , then there
exist two terminating chains such that b → d and c → d . This
property is known as diamond property. If d can’t be further
simplified using any rewriting rule, than d is called normal form of a.

If d can’t be further simplified using any rewriting rule, than d is called the
normal form of a.
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Let c = c1 = c1, c ′ = c ′1 = c ′1, e = e = e ′ = e ′ and all other coefficients
are equal to zero. Let zn+1 = kzn and X ′c denote the quotient commutative
ring X ′c = Z [c , c ′, e, zn]/R ′c .
Then R ′c = {1 + ck + e = 0, k + c ′ − c ′e − e2k = 0,−cc ′e + e3 + cc ′ +
e2 − e − 1 = 0}.

Theorem

For oriented link diagrams, there is a link invariant f with values in X ′c and
satisfies the following skein relations: If the two arcs are from the same
link component, then

f (E±) = −cf (E )− ef (EV )

If the two arcs are from different components, then

f (E±) = −c ′f (E )− ef (EV )

The value for the trivial n-component link is zn and if zn+1 = kzn then the
invariant has a unique normal form defined by R ′c .
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Comparison with Existing Invariants

(a) K11n73 (b) K11n74

This invariant still works where Kauffman two-variable polynomial and HOM-
FLY polynomial are fail to distinguish two different knots. For example, both
Kauffman two-variable polynomial and HOMFLY polynomial can not distin-
guish the K11n73 and K11n74, but our invariant can distinguish K11n73
and K11n74 clearly and very easily even using the simplified version.
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Invariant K11n73 K11n74

HOMFLY (−4v−2 + 11−8v2 + 2v4) +
(−4v−2 + 15 − 12v2 +
3v4)z2 + (−v−2 + 7−6v2 +
v4)z4 + (1− v2)z6

(−4v−2 + 11−8v2 + 2v4) +
(−4v−2 + 15 − 12v2 +
3v4)z2 + (−v−2 + 7−6v2 +
v4)z4 + (1− v2)z6

Kuffman (2a−4+8a−2+11+4a2)z0+
(−4a−5 − 13a−3 − 17a−1 −
13a − 5a3)z1 + (3a−6 +
a−4−13a−2−19−8a2)z2 +
(10a−5 + 24a−3 + 29a−1 +
25a + 10a3)z3 + (−4a−6 −
a−4+11a−2+18+10a2)z4+
(−9a−5 − 16a−3 − 15a−1 −
14a−6a3)z5+(a−6−3a−4−
6a−2−8−6a2)z6 + (2a−5 +
3a−3 + 2a−1 + 2a + a3)z7 +
(a−4 + a−2 + 1 + a2)z8

(2a−4+8a−2+11+4a2)z0+
(−4a−5 − 13a−3 − 17a−1 −
13a − 5a3)z1 + (3a−6 +
a−4−13a−2−19−8a2)z2 +
(10a−5 + 24a−3 + 29a−1 +
25a + 10a3)z3 + (−4a−6 −
a−4+11a−2+18+10a2)z4+
(−9a−5 − 16a−3 − 15a−1 −
14a−6a3)z5+(a−6−3a−4−
6a−2−8−6a2)z6 + (2a−5 +
3a−3 + 2a−1 + 2a + a3)z7 +
(a−4 + a−2 + 1 + a2)z8
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Invariant K11n73 K11n74

Our Invariant (24ec3c ′3 − 10e2c3c ′3 −
21c3c ′3 + 50ec2c ′2 +
12c2c ′2 − 47e2c2c ′2 −
31e2cc ′ − 14ecc ′ −
22cc ′+31e2+62e+32)z1

(4e2c3c ′ + 2c3c ′ −
4ec3c ′ + 2e2c2 +
6ec2c ′2 + 5c2c ′2 −
2ec2 − 4e2c2c ′2 − 2c2 −
2e2c−13e2cc ′−14ecc ′−
35cc ′+30e2+60e+31)z1

Thank You
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