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Part I . The oriented bracket



Some notations

We use the following symbols to denote crossings of link
diagrams:



Some Classical knot polynomials

Conway polynomial ∇E+(z)−∇E−(z) = z∇E (z)

Jones polynomial t−1JE+(t)− tJE−(t) = (t1/2 − t−1/2)JE (t)
HOMFLYPT polynomial. 1

v PE+(v , z)− vPE−(v , z) = zPE (v , z)
Kauffman polynomial and some others.

Those equations are called skein relations. They are homogeneous
equations.



We propose the following skein equations:

I
When the two strands of E± are from same component, they
satisfies the following relation:
f (E+) = c1f (E ) + c2f (HC ) + df (VC )
f (E−) = c1f (E ) + c2f (HC ) + df (VC ) + α

I If they are from different components:
f (E+) = c ′f (E ) + d ′f (S) + β

f (E−) = c ′f (E ) + d
′
f (S) + γ



We propose the following skein equations:

I
When the two strands of E± are from same component, they
satisfies the following relation:
f (E+) = c1f (E ) + c2f (HC ) + df (VC )
f (E−) = c1f (E ) + c2f (HC ) + df (VC ) + α

I If they are from different components:
f (E+) = c ′f (E ) + d ′f (S) + β

f (E−) = c ′f (E ) + d
′
f (S) + γ



Compare to the Kauffman Bracket

I The Kauffman Bracket

I The oriented Bracket without constant terms.



On Orientation

I

I Lemma 1: Let K be an oriented, −K denotes K with
orientation reversed. Then f (K ) = f (−K ).

I Lemma 2: Let L be an oriented 2-component link, −L denotes
L with all orientation reversed. Then f (L) = f (−L).

I A more general version will contain more terms, like
f (W ), f (HT ), f (VT ), · · · . By the above lemmas, they are
equivalent to the above invariant.
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A subtlety

I When the two strands of E± are from same component, they
satisfies the following relation:
f (E+) = c1f (E ) + c2f (HC ) + df (VC )
f (E−) = c1f (E ) + c2f (HC ) + df (VC ) + α

I If they are from different components:
f (E+) = c ′f (E ) + d ′f (S) + β

f (E−) = c ′f (E ) + d
′
f (S) + γ

I f (O ∪ K ) = vf (K )

I Rule: If there are crossings involves different components,
then first apply skein relations to those crossings.
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Calculation of the invariant :
Rule: If there are crossings involves different components, then
first apply skein relations to those crossings.

Whenever we have two non-split components, we deal with
their intersection points first.



Compare to the Kauffman Bracket

Definition of Kauffman Bracket (L. Kauffman, 1987):
For an unoriented diagram D, 〈D〉 is a Laurent polynomial in a
single variable A defined by the three following axioms.
1. 〈©〉 = 1 where © denotes the diagram of unknot with no
crossings.
2. Delta: 〈D ∪©〉 = δ〈D〉 where δ = −A−2 − A2.
〈D ∪©〉 denotes the diagram D together with a single component
that does not cross itself or D.
3. Skein relation:



Kauffman Bracket

Calculation: The bracket polynomial can be calculated in two
ways.
1. Inductively use the skein relation.
2. Simultaneously apply the skein relation to all crossings.
〈L〉 =

∑
S Aa(s)A−b(S)(−A2 − A−2)|S |−1

This is usually called the state sum formula. It is easier to use and
prove properties of the Kauffman Bracket. Hence this is very
useful.



On the state sum formula of the invariant:
Rule: If there are crossings involves different components, then
first apply skein relations to those crossings.

This invariant also has a state sum formula.
The final result looks like a summation of states, but the
coefficients depends on the special order of crossings to
apply the skein relations.



Part II . The relations among
coefficients



Equations for two crossings

Fpq = Fqp

I

I We only need equation sets 2,4.



Equations for two crossings

Fpq = Fqp

Case 2, (AC ,BD) Resolving p first, we shall get the following
equations.

I (E+,E+) = (c ′E ,E+) + (d ′S ,S−)

I −(c ′1E ,E+) = c ′{(E , c1E ) + (HC , c2HT ) + (HC , dVC )}
−(d ′S ,S−) = d ′{(S , c1S) + (VC , c2VT ) + (VC , dHC )}

I (E+,E+) = (c ′E ,E+) + (d ′S ,S−) =
c ′c1(E ,E ) + c ′c2(HC ,HT ) + d ′d(VC ,HC ) + · · ·

I Likewise, if we resolving q first, we shall get
(E+,E+) = c ′1c1(E ,E ) + c ′1c2(HC ,HT ) + c ′1d(VC ,HC ) + · · ·

I Compare the two results we get: d ′d = c ′1d , · · ·
I We switch the order of the second term d ′d = dc ′1. The the

first variable of both sides are from crossing point p.
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Completing the relations

Fpq = Fqp

I If we have an equation like xy = zw , then we write xy = zw ,
xy = zw , xy = zw . This is called completing the relations.

I

I Those relations are followed from case 2 by changing the
crossing from + to −.
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Coefficients relations from Fpq = Fqp:

d ′d = dc ′, d
′
d = dc ′, d ′d = dc ′, d

′
d = dc ′,

dd = c ′c2 + d ′c1, dd = c ′c2 + d
′
c1, dd = c ′c2 + d ′c1,

dd = c ′c2 + d
′
c1

d
′
c1 = c1d ′, d

′
c2 = c2d ′, dc2 = c1d , dc1 = c2d ,

dc2 = c1d , c ′c1 = c1c ′, c ′c2 = c2c ′,



Redermeister move invariance :
Ω1: 1− d = (c1 + c2)v , 1− d = (c1 + c2)v ,

Ω2: v = c ′ + d ′ , v = c ′ + d
′
,

f (O ∪ K ) = vf (K )
Redermeister move I,II invariance ⇒ Redermeister move three
invariance
Then f (D) is a knot invariant.



Regular invariant :
Ω2: v = (c ′(c1 + c2) + d ′(c1 + c2))v + (c ′d + dd ′),
1 = (c1v + c2v + d)(c1v + c2v + d)
f (O ∪ K ) = vf (K )
f (s+) = (c1v + c2v + d)f (K ), f (s−) = (c1v + c2v + d)f (K )
If diagram D has w+ positive crossings, w− negative crossings,
then
F (D) = (c1v + c2v + d)−w+(c1v + c2v + d)−w−f (K ) is a knot
invariant.



Calculation 2. Word problem and Normal form

Although the result is unique modulo the relations, but it is hard
to compare two results.
Different ways of calculation may give different results.
However, using the Diamond lemma, one can get a unique normal
form for the result.



Calculation 2. Word problem and Normal form

d ′d ′ = c ′c ′ , d ′d = bdc ′, · · ·
Can be regarded as rewriting rules.
d ′d ′ → c ′c ′ , d ′d → bdc ′, · · ·



An Equivalent version of the diamond lemma.

For every binary relation with no decreasing infinite chains and
satisfying the diamond property, there is a unique minimal element
in every connected component of the relation considered as a
graph.

w

u v

t

Figure: The diamond property.



Remark 1

Given any oriented link diagram, one can calculate f (D), then one
can get a unique normal form of f (D).



Part III . Non-homogeneous
invariant



Homogeneous and non-homogeneous equations

Homogeneous equation: ax + by + cz = 0
Non-homogeneous equation ax + by + cz = d
Here a, b, c, d are constants, x , y , z are variables.



Classical knot polynomials are homogeneous

Conway polynomial ∇E+(z)−∇E−(z) = z∇E (z)

Jones polynomial t−1JE+(t)− tJE−(t) = (t1/2 − t−1/2)JE (t)
HOMFLYPT polynomial. 1

v PE+(v , z)− vPE−(v , z) = zPE (v , z)
Kauffman polynomial and some others.



First approach to non-homogeneous invariant fails

afE+(t) + bfE−(t) + cfE (t) = 0
agE+(t) + bgE−(t) + cgE (t) = β

I If we change variable and let β = (a + b + c)γ, then
agE+(t) + bgE−(t) + cgE (t) = (a + b + c)γ

I a(gE+(t)− γ) + b(gE−(t)− γ) + c(gE (t)− γ) = 0

I Hence f (t) = g(t)− γ
I This gives a trivial non-homogeneous invariant.
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We need system of equations

af1(t) + bf2(t) + cf3(t) + df4(t) = β
ef1(t) + ff2(t) + gf3(t) + hf4(t) = 0

I If we change variable and let β = (a + b + c + d)γ, then
af1(t) + bf2(t) + cf3(t) + df4(t) = (a + b + c + d)γ

I a(f1(t)− γ) + b(f2(t)− γ) + c(f3(t)− γ) + d(f4(t)− γ) = 0
e(f1(t)− γ) + f (f2(t)− γ) + g(f3(t)− γ) + h(f4(t)− γ) =
−(e + f + g + h)γ

I Hence g(t) = f (t)− γ is still a non-homogeneous invariant.
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I When the two strands of E± are from same component, they
satisfies the following relation:
f (E+) = c1f (E ) + c2f (HC ) + df (VC )
f (E−) = c1f (E ) + c2f (HC ) + df (VC ) + α

I If they are from different components:
f (E+) = c ′f (E ) + d ′f (S) + β

f (E−) = c ′f (E ) + d
′
f (S) + γ



Non-homogeneous term:
We need the following to get a knot invariant.

I c ′α + β = 0, d
′
α + γ = 0

(c1v + c2v + d)α = 0

(d + 1 + c ′(c2 − c1) + d
′
(c1 − c2))α = 0

I β, γ are determined by α, and α has zero divisors.

I In the future, we need to calculate the complete rewriting rule
and get some concrete example.
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Part IV . A related invariant



A related invariant

I The oriented Kauffman Bracket without constant terms.

I E+ + bE− = (c1 + bc1)E + (c2 + bc2)HC + (d + bd)VC ,

E+ + b′E− = (c ′ + b′c ′)E + (d ′ + b′d
′
)S ,
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I

I If they are from different components:
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I If they are from different components:
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We propose the following skein equations:

I

I We guess that we do not need all equation sets 1-5. But we
have not finished the proof yet.



Relation with other polynomials

Compare to the well-known knot polynomials.

I (1) The skein relation has two cases.

I (2) If we set c2 = c3 = c4 = d1 = d2 = c ′2 = d ′1 = d ′2 = 0, and
b = b′, c1 = c ′1, then we get the HOMFLY polynomial.

I (3) If we set c1 = c2 = c3 = c4 = −z/4, c ′1 = c ′2 = −z/2.d1 =
d2 = d ′1 = d ′2 = z/2, and b = b′ = −1, and modify it by
writhe, then we can get the 2-variable Kauffman polynomial.

I (4) Hence it is a generalization of both HOMFLY and
2-variable Kauffman polynomial.
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writhe, then we can get the 2-variable Kauffman polynomial.

I (4) Hence it is a generalization of both HOMFLY and
2-variable Kauffman polynomial.



Relation with other polynomials

Compare to the well-known knot polynomials.

I (1) The skein relation has two cases.

I (2) If we set c2 = c3 = c4 = d1 = d2 = c ′2 = d ′1 = d ′2 = 0, and
b = b′, c1 = c ′1, then we get the HOMFLY polynomial.

I (3) If we set c1 = c2 = c3 = c4 = −z/4, c ′1 = c ′2 = −z/2.d1 =
d2 = d ′1 = d ′2 = z/2, and b = b′ = −1, and modify it by
writhe, then we can get the 2-variable Kauffman polynomial.

I (4) Hence it is a generalization of both HOMFLY and
2-variable Kauffman polynomial.



Related works

I (1) New invariants of links and their state sum models, Louis
H. Kauffman, Sofia Lambropoulou, arXiv:1703.03655.
(2) Their invariant is the usual HOMFLY polynomial when it
is restrict to knots.
(3) When restrict to knots, our invariant usually contains all
the variables.



YASUYUKI MIYAZAWA’s approach

I (1) A link invariant dominating the HOMFLY and the
Kauffman polynomials, Journal of Knot Theory and Its
Ramifications, November 2010, Vol. 19, No. 11 : pp.
1507-1533, YASUYUKI MIYAZAWA.

I HD+ + abHD− + zHD0 + wHD∞ = 0,

(2) Their way is a ”local resolution”, ours is a ”global
resolution”.



Last page

Thank you for attention!
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