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• In recent years, the interest in knots in direct products of surfaces and 
intervals has increased. 
• This can be explained by the fact that manifolds of the form F × I 

constitute the next to simplest class of 3 manifolds, after the sphere 
!". 
• Knots in such manifolds are described by diagrams similar to spherical 

diagrams of classical knots. The Reidemeister moves play the same 
role: they implement knot isotopies. 
• The theory of knots in products of surfaces and intervals is close to 

virtual knot theory and dominates it in some sense. 



• Let F be a connected closed orientable surface. A knot in F × I is 
defined as an arbitrary simple closed curve K ⊂ F × I. 

• Two knots K ⊂ F × I and K ' ⊂ F ' × I are said to be equivalent if the 
pair (F × I, K) is homeomorphic to the pair (F ' × I, K '). 

• Consider two knots "#⊂ $#× I, where i = 1, 2. To define their annular 
connected sum "%# "& ⊂ (F1# F2) × I, for each i we choose a disk '#
⊂ Fi and isotopically deform ii "# so that the intersection
(# = "# ∩ ('#×-) is a trivial arc in the ball '#× I. 



Definition 1. 

• The knot K = K1 # K2 in the product of the surface F = F1 # F2 and the 
interval obtained by gluing together the manifolds (F!\IntD!) × I, 
where ! = 1,2, by a homeomorphism   ":#D1 ×I→#D2 ×I  such that 
"(# $%) = #$& is called an annular connected sum of the knots '1 ⊂ F1
× I and K2 ⊂ F2 × I. 



• If this definition is reformulated in the language of diagrams, then we 
obtain the same definition as in classical case.
• We need to cut from the surfaces !" and !# a pair disks intersecting 

the diagram in the single simple arc each, and then glue  the resulting 
surfaces together by a homomorphism of the boundaries preserving 
the endpoints of the above arcs.



• The connected sum K1 # K2 depends both on the choice of the disks 
D1 and D2 and of the isotopic deformations of knots and on the 
choice of the homeomorphism  !. In the general case, the number of 
different connected sums of two given knots is infinite. 

• However, if one of the knots is a trivial knot in "# × I, then the knot 
K1 # K2 is equivalent to the second knot. Such a summation is said to 
be trivial. 



• A knot in  ! × # is called prime if it cannot be represented as a 
nontrivial connected sum of two other knots. 

•



Theorem 1. 

• If a knot ! ⊂ # × % is not a trivial knot in &' × %, then this knot 
either is prime or decomposes into a connected sum of prime knots.

• This theorem says nothing about uniqueness of prime summands.



Definition 2. 

• A knot ! ⊂ # × % is said to be homologically trivial if it determines 
the trivial element in the first homology group 
• &' #×%; ℤ* = &'(#; ℤ*)

• The class of homologically trivial knots is closed with respect to 
connected sums: a connected sum of two knots is homologically 
trivial  if and only if both summands are homologically trivial. 



Theorem 2. 

• The summands of any homologically trivial knot represented as a 
connected sum of prime knots are determined uniquely up to 
equivalence. 

• This theorem is an analogue (for knots in thickened surfaces) of the 
Shubert theorem on prime decompositions of classical knots.



• To present the basic ideas in the proofs of both Theorems we define 
four types of reductions of knots in thickened surfaces (one is main 
type, and the other three are arbitrary) by analogy with annular 
reductions of manifolds.



• To describe the basic ideas of the proofs of these theorems, it is 
convenient to the use the operation of annular reduction, which is 
inverse to connected summation. We say that a separating annulus 
! ⊂ # × % is admissible (with respect to a given knot & ⊂ # × %) if 
it intersects & in two points, is isotopic to a vertical annulus, and is 
not trivial, i.e., does not cut out from # × % a ball of the form 
'( × % containing inside a trivial arc of &. The annular reduction 
consists in cutting # × % along an admissible annulus ! ⊂ # × % and 
pasting the two copies of this annulus thus obtained by two handles of 
index 2 containing trivial arcs. 



Using Diamond Lemma
• Consider the abstract graph Γ constructed as follows. Each of its 

vertices is either a pair of the form (#×%, ') not being a trivial knot in   
)*×% or a disconnected union of several such pairs. We denote the 
set of all vertices by (Γ). Vertices ,,- ∈ (Γ) are joined by an 
oriented edge ,- if and only if the set of knots (W). is obtained 
from the set of knots (,) by applying a non trivial annular reduction 
to some pair (# × %, ') ∈ ,.



Definition 3 

• We say that a vertex ! of the graph Γ is a root of a vertex # if 
• (i) there exists a coherently oriented path along edges of the graph 

from # to !; 
• (ii) ! is a sink, i.e., there are no outgoing edges. 



• It follows at once from Definition 1 that a nontrivial knot ! ⊂
# × % decomposes into prime summands if and only if the 
corresponding vertex has a root. Moreover, the summands of such a 
decomposition are determined uniquely if and only if the root is 
unique. 

• For this reason, the question of the existence and uniqueness of a 
root for any vertex of the graph Γ is very important. 



• We need two useful conditions, (CF) (complexity function) and (EE) 
(edge equivalence). 
• (CF) There exists a function ! " → $% = {1,2, … } such that, for any 

edge "-, the inequality !(") > !(-) holds. 
• (EE) Any two edges outgoing from any vertex " are equivalent in the 

sense of the relation generated by elementary equivalences of the 
form "1~"-,  where the edges "1 and "- are chosen so that 
the vertices 1 and - have a common root. 



Theorem (C. Hog-Angeloni, S.Matveev, Roots of 3-
manifolds)

• Let be an oriented graph possessing properties ("#) and (%%). Then 
any vertex has a unique root. 

• This simple Theorem asserts that conditions ("#) and (%%) are 
sufficient for both the existence and the uniqueness of a root for any 
vertex of an abstract oriented graph. 



Property ("#).
• Let us show that the graph Γ constructed above has property 
("#).We apply annular reduction to all knots contained in a vertex '
as long as possible. This process is finite, because the total number of 
successive non trivial reductions which can be applied to a given pair 
(# × ), +) is bounded by a constant depending only on this pair. 
Therefore, the required function ,(') → ℤ/ can be defined as 
follows: the number ,(') equals the length of the longest chain of 
nontrivial reductions that can be applied to the union of knots 
forming the vertex '. 



Property ("").
• Let us show that Γ has property (""). Suppose that its edges &'(

and &') correspond to reductions along annuli *( and *), 
respectively. 



Case 1. 
• Suppose that !" ∩ !$ = ∅. Then, the annulus !" survives under the 

reduction along the annulus !$. Thus, to one of the knots forming 
the vertex '$ we can apply the reduction along the annulus !" (if it 
is nontrivial in '$). The same result is obtained by applying the 
reduction along the annulus !$ to '". Therefore, '" and '$ have 
a common root. If the annulus !" is trivial in '$, then !" and !$ are 
parallel in (, and the vertices '" and '$ simply coincide. 



• Now, we apply decreasing induction on the number ! = #(
)

&' ∩
&) of components in the intersection of the annuli &' and &). The 
base of induction is the case ! = 0 considered above. To perform 
the inductive step, it suffices to construct an admissible mediator 
annulus &+ ⊂ -×/ for the given annuli  &', &) ⊂ -×/ such that the 
numbers #(&' ∩ &+) and   #(&)∩ &+) are strictly less than !. The 
cases in which there is no such a mediator annulus are very special, 
and the existence of a common root for the vertices 1' and 1) in 
these cases can be proved directly. 



Case 2. 

• Suppose that !" ∩ !$ contains a trivial circle or a trivial arc. Then a 
mediator annulus is obtained by using the standard procedure of 
intersection elimination by means of a surgery of one of the annuli 
along the innermost circle or the outermost arc of the other annulus. 
• If the intersection !" ∩ !$ contains no trivial circles and arcs, then it 

consists of either nontrivial circles or radial arcs (i.e., arcs joining 
different circle on the boundaries of the annuli). In the case of 
nontrivial circles, a mediator annulus is constructed in the same way 
as above by means of a surgery of one of the annuli !" and !$ along 
two circles in their intersection which are neighboring with respect to 
the second annulus. 



• In order to consider the case of radial arcs, we introduce a surgery of 
the given one dimensional manifold ! ⊂ # along an arc $ ⊂
# adjacent to ! at the endpoints. The surgery consists in cutting the 
manifold ! along %$ and joining the four endpoints of the obtained 
arcs by two parallel copies of the arc $. 
• Suppose that the intersection &' ∩ &) consists of radial arcs. Then 

the annuli have the form  &* = !*×- for . = 1,2, where !* are 
separating simple closed curves in #. Therefore, we can forget for a 
while about the annuli and deal with curves in #; instead of the knot 
2, we consider its projection 2 in #. Since the annuli are admissible, 
it follows that 2 intersects each curve in precisely two points. 



Case 3. 

• Suppose that !" ∩ !$ consists of % ≥ 5 points. These points divide 
each circle into % arcs. Since % ≥ 5, each of the circles (e.g., !") 
contains a pair of neighboring arcs ( and ) not intersecting the 
projection of the knot. The surgery of !$ along the arc ( yields the 
union of two disjoint circles, which we denote by !$* , and !$**. The 
surgery of !$* ∪ !$** along a parallel copy of the arc ) that joins 
!$* with !$** gives a nontrivial separating circle !, ⊂ . such that 
!, ∩ /0 consists of two points, #(!, ∩ !") = % − 2, and #(!, ∩
!$) = 4. It follows that the annulus !,×9 is a mediator. 



Case 4. 
• In the only remaining case, the intersection !" ∩ !$ consists of two 

or four points. There are two possibilities: 
• (a) %& intersects precisely one arc of each circle, and each such 

intersection consists of two points; 
• (b) %& intersects two arcs of every circle, each at one point. 
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consider only circles and the projection K of the knot on F . In this situation, we
refer to c as a mediator circle if the annulus c⇥ I is a mediator.
Method 4. Assume that c1 \ c2 consists of k > 5 points. They divide each circle
into k arcs. Since k > 5, one of the circles (say, c1) contains a pair ↵, � of adjacent
arcs which do not intersect K. We apply a surgery to c2 along ↵ by cutting c2 at
the points in @↵ and attaching two parallel copies of the arc ↵. Since the curve c2

splits F , we obtain two circles c
0 and c

00, which are either both splitting, or both
non-splitting. In the first case one of the circles c

0 or c
00 is a mediator. What

shall we do in the second case? This problem did not arise in Method 4 of § 7,
since then we allowed reductions along non-splitting annuli, while now we use only
splitting ones.

This situation can be resolved by applying a surgery to the union c
0 [ c

00 along
an arc connecting the two circles and parallel to the arc � (see Fig. 14). This trick
is similar to the switching surgery in § 4.2.

Figure 14

As a result, we obtain a non-trivial splitting circle c ⇢ F intersecting the pro-
jection K at two points corresponding to the points in c2 \ K. It can be taken
as a mediator. Indeed, ](c \ c1) < ](c1 \ c2) (since the two points in the inter-
section c1 \ c2 have disappeared) and ](c \ c2) < ](c1 \ c2) (since ](c \ c2) = 4,
and ](c1 \ c2) > 5 by assumption).
Method 5. Since the circles c1 and c2 are both splitting, they intersect at an even
number of points. Therefore, it remains to consider two cases: the intersection
consists of 2 or 4 points. In the first case we have µ(

��!
AB1,

��!
AB2) = ](c1 \ c2) = 2.

Then the complement F \ Int N , where N = N(c1 [ c2) is a regular neighbourhood
of the union of the circles c1, c2 in F , consists of four connected surfaces Xi,
1 6 i 6 4, each of which is bounded by a single circle in @N . At least three of
these circles intersect K at 0 or 2 points. We assert that at least one of the circles
is non-trivial and therefore can be taken as a mediator. Indeed, otherwise we could
shift the circles c1 and c2 isotopically to obtain disjoint circles c

0
1 and c

0
2 which

define the same edges
��!
AB1,

��!
AB2 as c1 and c2. This contradicts the assumption

that µ(
��!
AB1,

��!
AB2) = 2.

Now consider the second case, when µ(
��!
AB1,

��!
AB2) = ](c1\c2) = 4. The points in

the intersection of the circles c1 and c2 split each of these circles into 4 arcs. Assume
that the projection K intersects some arc l1 of one of the circles (say, c1) at one
point. Since the knot K is homologically trivial, K also intersects the arc l2 of the
circle c2 with the same ends at one point. The second arc of c1 intersecting K can



• In any of these cases, we can either find a mediator annulus or 
(thanks to the simplicity of the situation) directly construct a common 
root of the vertices !" and !#. Under all other mutual 
arrangements of the curves $" and $# and the projection %&, there 
is a biangle intersecting %& in an odd number of points. This 
contradicts the assumption that the knot & is homologically trivial 
(this assumption is used only at this place). 



Possible intersections of a homologically trivial 
knot with !. 
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be either adjacent to l1 or not. Using the homological triviality of the knot K once
again, we obtain two possible ways that K can intersect a regular neighbourhood
N = N(c1 [ c2) (see Fig. 15, (a), (b)).

Assume now that there are no arcs intersecting K at one point, but there is an arc
intersecting K at two points. In this situation we obtain three more possibilities
(see Fig. 15, (c)–(e)). Finally, there is yet another possibility (see Fig. 15, (f)),
corresponding to the case c1 \K = c2 \K = ?.

Figure 15. Possible intersections of a homologically trivial knot with N .

The proofs of the existence of a mediator function are similar in all these cases,
so we only consider case (a). The boundary @N consists of 6 circles, and the
complement F \ Int N can consist of 4, 5, or 6 parts Xi, 1 6 i 6 6, where the parts
X3 and X4, and also the parts X5 and X6, may coincide. The reason is that the
surfaces of only these two pairs lie on the same side of each of the circles c1 and c2

(see Fig. 16, left).
We assert that at least one of the circles @Xi, 1 6 i 6 6, is a mediator. Arguing

by contradiction, assume that there are no mediators among them. Since @X2 and
@X4 intersect K at 2 points each and are not mediators, they are trivial. In other
words, from the manifold F ⇥ I the annuli @X2 ⇥ I and @X4 ⇥ I cut balls with
trivial arcs inside. Hence, the parts X2 and X4 are disks, and we can assume that K

intersects them in simple arcs.
If X1 6= X3, then the circles @X1 and @X3 are splitting. Since there are no

mediators, they are trivial. This contradicts the non-triviality of the circle c1. We
therefore get that the parts X1 and X3 form a single surface (which we denote
by U). Similarly, the parts X5 and X6 also form a single surface W (see Fig. 16,
right).

We introduce two transformations, which are applied to the pair (F,K). The
first transformation consists in cutting o↵ a pair (U,U \ K) and gluing up the
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Figure 13. Summation of ribbons in T ⇥ I can produce infinitely many

di↵erent knots in a thickened surface of genus 2 by means of variation.

onto the same point of F , then the images of the parts of K containing these two
points intersect transversally. In order to construct a diagram of a knot, one needs
to specify at each double point which part of the knot passes above the other (in
the sense of the coordinate t 2 I = [0, 1]). A knot is determined uniquely by its
diagram. Of course, Reidemeister moves play the same role: they realise isotopies
of knots. We note that the theory of knots in thickened surfaces is close to the
theory of virtual knots [22], [23], and in a sense the former dominates the latter.

Consider two knots Ki ⇢ Fi ⇥ I, i = 1, 2. In order to define their annular
connected sum K1 # K2 ⇢ (F1 # F2) ⇥ I, we choose a disk Di ⇢ Fi for each i,
and deform each knot Ki isotopically so that the intersection li = Ki \ (Di ⇥ I)
becomes a trivial arc in the ball Di ⇥ I.

Definition 12. An annular connected sum of knots K1 ⇢ F1 ⇥ I and K2 ⇢ F2⇥ I

is a knot K = K1 # K2 in the product of the surface F = F1 # F2 and a segment,
and is obtained by gluing the manifolds (Fi \ Int Di) ⇥ I, i = 1, 2, together by
a homeomorphism ' : @D1 ⇥ I ! @D2 ⇥ I such that '(@l1) = @l2.

At first glance this definition has little in common with the definition of a con-
nected sum of classical knots. However, if it is reformulated in the language of
diagrams, then we obtain the same definition as in the classical case. We need to
cut from the surfaces F1 and F2 a pair of disks intersecting the diagram in a single
simple arc each, and then glue the resulting surfaces together by a homeomorphism
of their boundaries preserving the endpoints of the above arcs. In the case Fi = S

2

we obtain the connected sum operation in the classical sense.
A connected sum K1 # K2 depends on the choice of the disks D1 and D2,

the isotopical deformations of the knots, and the homeomorphism '. Therefore,
a connected sum of knots in thickened surfaces is a multivalued operation. It is
commutative in the sense that K1 # K2 and K2 # K1 coincide as sets of knots. In
general, the number of di↵erent connected sums of two given knots is infinite even
in the case when the knots are trivial, that is, if they bound disks. These disks are
shown in Fig. 13 as ribbons.

However, if one of the summands in K1 # K2 is an unknot in S
2 ⇥ I, then the

knot K1 # K2 is equivalent to the second knot. A connected sum of this form is
said to be trivial. A knot in F ⇥ I is said to be prime if it cannot be represented
as a non-trivial connected sum of two other knots.

Theorem 11. If a knot K ⇢ F ⇥ I is not an unknot in S
2 ⇥ I , then it is either

prime or can be decomposed into a connected sum of several prime knots.

Summation of ribbons in ! × # can produce 
infinitely many different knots in a thickened 
surface of genus 2 by means of variation. 



Remark 1.

• The condition of homologous triviality of a node is essential. In next 
figure shows a diagram of a knot in a thickened surface of genus 2, 
which !"×$ allows two expansions with different terms. Reduction 
along the ring gives the union of two primary knots in two copies of 
the standard thickened torus %&×$. Reduction along the ring 
!&×$ also gives a pair of primary knots in %&×$, but completely 
different. 





Remark 2.

• As in the classical case, the theory of knots in ! × # has several 
different interpretations. And knots, and surfaces, and ambient 
manifolds (i.e., direct products of surfaces into segments) can be 
considered as with orientations, or  without. 
• In all cases, the theorem on the existence and uniqueness of 

decomposition of a node into a connected sum of primary terms 
remains valid (with a corresponding change in the concept of a 
connected sum).
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Figure 16. Reductions along the circles c1 and c2 give the same result,

regardless of how the knot passes through U .

two resulting holes by disks with trivial arcs inside. The second transformation
is similar, but now the part W is cut o↵, and the holes are glued up by disks
without arcs. We denote the results of these transformations by (Fu,Ku) and
(Fw,Kw), respectively. It can be seen from Fig. 16 that these pairs are obtained
from the pair (F,K) as a result of both reduction along c1 and reduction along c2.
Therefore, the edges

��!
AB1,

��!
AB2 coincide, and the number µ(

��!
AB1,

��!
AB2) is equal

to 0, in contradiction to the assumption that it is equal to 4. By way of illustration
we can see that in the case U = W = S

1 ⇥ I shown in Fig. 16 the two reductions
give two copies of a thickened torus S

1 ⇥S
1 ⇥ I with a meridional knot in the first

case and a more complicated knot in the second case. Thus, the properties (FP)
and (MF) are satisfied, and Theorem 12 follows from the Diamond Lemma. ⇤

As mentioned above, the homological triviality of knots is important: if we omit
it in the formulation of Theorem 12, then there will be counterexamples. Two types
of knots in thickened surfaces admitting di↵erent prime decompositions are shown
schematically in Fig. 17, (a), (b).

In order to turn Fig. 17, (a) into a real picture, one needs to glue surfaces U

and W having two boundary circles each to the edges of the holes labelled by the
letters u and w. The letter T (for ‘tangle’) denotes a disk. The projection of
the knot must intersect U , W , and T in a highly non-trivial way, so that all the
summands obtained by reductions along the circles c1 and c2 and shown on the right
will be prime and di↵erent.

The counterexample shown in Fig. 17, (b) is a more economical one: there is
no tangle T , the projection of the knot intersects only one boundary circle of the
surface U , and two of the four resulting summands coincide. This example shows
that there exist knots Ki ⇢ Fi ⇥ I, 0 6 i 6 3, such that K0 = K1 # K2 and
K0 = K1 # K3, but K2 6= K3. One can take F0 to be the surface of a handlebody
of genus 2, and each other Fi to be a torus S

1 ⇥ S
1.

By analogy with § 6.3, we refer to a knot (F ⇥ I, K) as a basis counterexample if
(1) any non-trivial summand of it has a unique prime decomposition;

Reductions along the circles !" and !# give the same result, 
regardless of how the knot passes through $. 
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Figure 17. Two types of counterexamples.

(2) there exists a pair of admissible annuli P,Q ⇢ F ⇥ I such that the unions
of the prime summands of the knots obtained from the knot (F ⇥ I, K) by
reductions along P and Q are di↵erent.

We refer to such pairs of annuli as exceptional. Two pairs Pi, Qi ⇢ (Fi ⇥ I, Ki),
i = 1, 2, of exceptional annuli are said to be equivalent if there exists a homeo-
morphism h : N1 ! N2 between regular neighbourhoods Ni = N(Pi [Qi) such
that h(P1 [Q1) = P2 [Q2 and h(N1 \K1) = N2 \K2. In the examples above,
the pairs c1 ⇥ I, c2 ⇥ I are exceptional. Most likely, any other exceptional pair is
equivalent to one of these.

Remark 3. As in the classical case, the theory of knots in F ⇥I has several di↵erent
interpretations. Knots, surfaces, and ambient manifolds (that is, direct products of
surfaces with a segment) can be considered together with orientations, or without
them. In all cases, the theorem on the existence and uniqueness of a decomposition
of a homologically trivial knot into a connected sum of prime summands remains
true (with the notion of a connected sum appropriately changed). The proofs



END

• Thank you for your attention
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Figure 18. A special connected sum
⇠
# is a superposition of an annular

connected sum # and a destabilization d along A.

Proof. Let v = v1 # v2. Then a representative (F ⇥ I, K) of the knot v admits
a reduction to some representatives (Fi ⇥ I, Ki) of the knots vi along a surface
X ⇢ F ⇥ I, where X is either a vertical splitting annulus intersecting K at two
points or a splitting pair X1 [ X2 of vertical annuli intersecting K at one point
each. Assume that there is a destabilizing annulus A in F ⇥ I. If A \ X = ?,
then the genus of the surface F and that of one of the surfaces Fi can be decreased
by applying a destabilization along A. The idea of the proof is as follows. If the
intersection of the annuli A, X is non-empty, then we can apply a destabilization
after removing this intersection. The problem is that the intersection is not always
removable. However, in all such cases it is possible to decrease the genus of F

by choosing another representative of the virtual knot v and replacing the annular
reduction to representatives of the knots v1 and, v2 by a special reduction. We now
give a more specific argument.

Assume that the intersection X \ A contains a trivial circle or a trivial arc, or
that it consists only of non-trivial circles. Then by replacing X by a new surface the
intersection can be made smaller using Methods 1–3 in the proof of Theorem 12.
The decomposition v = v1 # v2 is preserved under this operation. Therefore, it
su�ces to consider the vertical case when X \ A consists of radial segments, and
the annuli X and A are projected onto curves. Then instead of the knot K and the
annuli X, A ⇢ F ⇥ I we can consider their projections K, x, a on F .

Suppose that among the arcs into which the points in x \ a divide x, there
is an arc ↵ which does not intersect K. Since x splits F , the endpoints of this
arc are di↵erent. Then the surgery of the circle a along ↵ produces either one
destabilizing circle, or two circles with at least one of them destabilizing. This
depends on whether ↵ approaches a from one side or from two di↵erent sides.
Fig. 12 illustrates the situation correctly if we rename c1 and c2 as x and a and
ignore the caption. By replacing a by a new destabilizing circle we decrease the
number of points in x \ a.




