VI Russian-Chinese Conference on Knot Theory and Related Topics

Ribbon Surface-Link and Stable-Ribbon Surface-Link

Akio KAWAUCHI Osaka City University Advanced Mathematical Institute

June 18, 2019

This talk is an explanation of the following papers in ongoing project:

[K1] A. Kawauchi, Ribbonness of a stable-ribbon surface-link, I. A stably trivial surface-link.

[K2] A. Kawauchi, Ribbonness of a stable-ribbon surface-link, II. General case.

[K3] A. Kawauchi, Triviality of a surface-link with meridian-based free fundamental group.

http://www.sci.osaka-cu.ac.jp/kawauchi/

Plan of this talk:

- **1. A ribbon surface-link**
- **2.** A stable surface-link and handles
- 3. Uniqueness of an orthogonal 2-handle pair
- 4. Main result: Cancelling the stableness

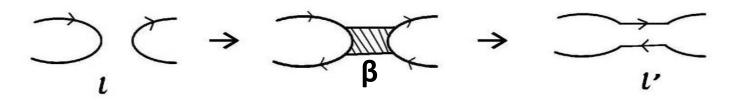
1. A ribbon surface-link

[KSSI1982] A. Kawauchi, T. Shibuya and S. Suzuki, Descriptions on surfaces in four-space, I : Normal forms, Math. Sem. Notes, Kobe Univ. 10 (1982),75-125.

A <u>surface-link</u> is a closed oriented (possibly disconnected) surface F smoothly embedded in the 4-space $R^4 = \{(x,t) | x \in R^3, t \in R\}$.

A surface-knot F is <u>equivalent</u> to a surface-knot F', which is denoted by $F \cong F'$, if \exists an equivalence (i.e., an orientation-preserving diffeomorphism f: $R^4 \rightarrow R^4$ sending F to F' orientation-preservingly).

<u>A band surgery on a link</u> : $l \rightarrow l'$ in \mathbb{R}^3



For a subset $A \subseteq \mathbb{R}^3$ and an interval [a,b], use the notation $A[a,b]=\{(x,t) \mid x \in A, t \in [a,b]\}$.

<u>The realizing surface of a band surgery</u> $l \rightarrow l'$ by a system β of bands $\beta_1, ..., \beta_m$ is a surface F_a^b in R³[a,b] defined by:

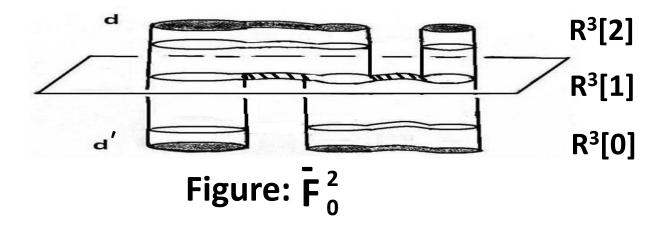
$$F_{a}^{b} \cap R^{3}[t] = \begin{cases} l' [t], & (a+b)/2 < t \leq b \\ (l \cup \beta)[t], & t=(a+b)/2 \\ l[t], & a \leq t < (a+b)/2. \end{cases}$$

Let $F_a^b = F_{a_0}^{a_1} \cup F_{a_1}^{a_2} \cup \dots \cup F_{a_{m-1}}^{a_m}$, $a = a_0 < a_1 < \dots < a_m = b$, be the realizing surface of a band surgery sequence $l_0 \rightarrow l_1 \rightarrow \dots \rightarrow l_{m-1} \rightarrow l_m$ in R³.

Assume $l_0 = o_0$ and $l_m = o_m$ are trivial links with d' and d any bounding disk systems, respectively. The <u>closed realizing surface</u> in R³[a,b] of $o_0 \rightarrow l_1 \rightarrow ... \rightarrow l_{m-1} \rightarrow o_m$ in R³ is:

 $\mathbf{F}_{a}^{b} = d'[a] U F_{a}^{b} U d[b].$

<u>Lemma</u> 1.1 ([KSSI1982]). \forall surface-link F is equivalent to the closed realizing surface $\mathbf{\bar{F}}_{a}^{b}$ of a band surgery sequence o' \rightarrow o. Further, the equivalence class of $\mathbf{\bar{F}}_{a}^{b}$ is independent on choices of the disks d' and d.



A surface-link F in R⁴ is <u>ribbon</u> if $F = \overline{F}_a^b$ for a band surgery sequence $o \rightarrow l \rightarrow o$ with o a trivial link and the band surgery $l \rightarrow o$ is the inverse of $o \rightarrow l$.

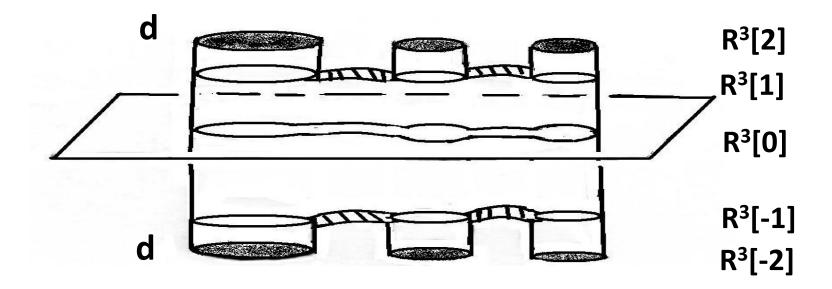


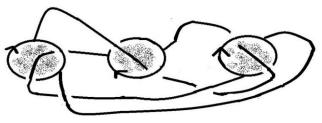
Figure:
$$\mathbf{F}_{-2}^2$$

<u>Observation</u>. The ribbon surface-link $\mathbf{\bar{F}}_{a}^{b}$ is given by the surgery of the trivial S²-link O= $\partial(d[a,b])$ in R⁴ along embedded 1-handles N(α)= $\beta[a',b']$ with a<a'<b'<b, where d is a disk system with $\partial d=o$ and α is the centerline system of the band system β .

By [HK1979], the equivalence class of $\mathbf{\bar{F}}_{a}^{b}$ is determine by the core arcs α of the 1-handles N(α) and independent of framings of α .

[HK1979] F. Hosokawa and A. Kawauchi, Proposals for unknotted surfaces in four-space, Osaka J. Math. 16 (1979), 233-248.

<u>Theorem</u> ([K2015, K2017, K2018]): Every ribbon surface-link is identified with a chord diagram consisting of a based loop system and a chord system modulo the moves M0, M1, M2.



[K2015] A. Kawauchi, A chord diagram of a ribbon surface-link, JKTR 24 (2015), 1540002 (24pp.).

[K2017] A. Kawauchi, Supplement to a chord diagram

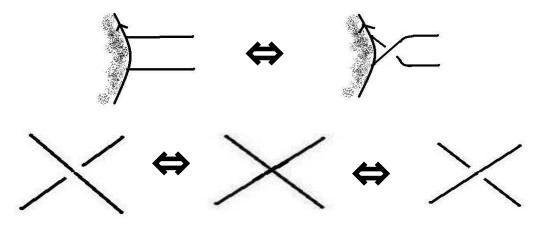
of a ribbon surface-link, JKTR 26 (2017), 1750033 (5pp.).

[K2018] A. Kawauchi, Faithful equivalence of equivalent ribbon surface-links, JKTR 27 (2018), 1843003 (23pp.).

The move MO: Reidemeister-moves.

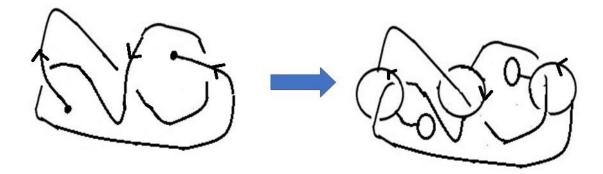
The move M1: Fusion-fission move.

The move M2: Chord moves.



<u>Note:</u> \exists canonical maps inducing the same groups:

(a virtual knot) \rightarrow (a chord diagram)/(M0,M1,M2), (a knotoid) \rightarrow (a chord diagram))/(M0,M1,M2).



2. A stable surface-link and handles

A surface-link F is *trivial* (or *unknotted and unlinked*)

if \exists mutually disjoint handlebodies V in R⁴ such that $\partial V = F$.

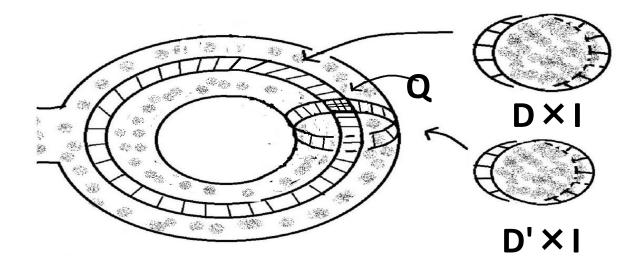
A <u>stabilization</u> of a surface-link F is a connected sum $\overline{F} = F \# T_1 \# T_2 \# ... \# T_m$ for trivial torus-knots T_i (i=1,2,...,m) for some m.

A <u>handle-irreducible summand</u> of a surface-link F is a surface-link F^* of minimal total genus such that a stabilization \overline{F}^* is equivalent to F. A 1-<u>handle</u> on a surface-link F in R⁴ is an embedded 1-handle I × D on F with I × D ∩ F= (∂ I) × D. A 2-<u>handle</u> on a surface-link F in R⁴ is an embedded 2-handle D × I on F with D × I ∩ F= (∂ D) × I.

<u>Note</u> ([нк1979]). ∀ surface-link F is obtained from a trivial surface-knot by the surgery along finitely many disjoint 2-handles.

('.') A handlebody is obtained from ∀ connected Seifert hypersurface V for F by the surgery along mutually disjoint 1-handles in V. An <u>orthogonal 2-handle pair (:= O2-handle pair</u>) is a 2-handle pair ($D \times I$, $D' \times I$) on a surface-link F such that the core disks D and D' meet transversely at just one point p in F with

 $D \times I \cap D' \times I = (\partial D) \times I \cap (\partial D') \times I = p \times I \times I = :Q.$



An orthogonal 2-handle pair (:= O2-handle pair)

Let (D×I, D'×I) be an O2-handle pair on a surface-link F.

Let $F(D \times I)$ and $F(D' \times I)$ be the surface-links obtained from F by the surgeries along $D \times I$ and $D' \times I$, respectively.

Let $F(D \times I, D' \times I)$ be the surface-link which is the union of the once-punctured surface

 $F^{c} = cI(F - ((\partial D) \times I \cup (\partial D') \times I))$

and the plumbed disk $\delta = D \times (\partial I) \cup Q \cup D' \times (\partial I)$.

<u>Lemma 2.1 ([K1])</u>. For any O2-handle pair ($D \times I$, $D' \times I$) on \forall surface-link F,

 $F(D \times I, D' \times I) \cong F(D \times I) \cong F(D' \times I).$

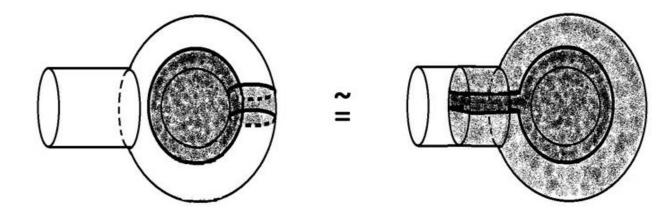
A compact once-punctured torus T^0 in a 3-ball B is <u>trivial</u> if T^0 is smoothly and properly embedded in B and \exists a solid torus V in B with $\partial V = T^0 \cup \delta$ for a disk δ in ∂B .

A <u>bump</u> B of a surface-link F is a 3-ball in R⁴ such that $F \cap B = T^0$ in B.

Let F(B) be a surface-link $cl(F-T^0) \cup \delta$ for a disk δ in ∂B with $\partial \delta = \partial T^0$.

<u>Lemma 2.2 ([K1])</u>. (1) A bump B is obtained uniquely from \forall given O2-handle pair (D × I,D' × I) on a surface-link F with F(B) = F(D × I, D' × I).

(2) An O2-handle unordered pair ($D \times I$, $D' \times I$) is uniquely obtained from \forall given bump B on a surface-knot F in R⁴ with F($D \times I$, $D' \times I$) = F(B).



$\Delta = D \times I \cup D' \times I$

<u>Lemma 2.3 ([K2])</u>. For an O2-handle pair (D × I, D' × I) on a surface-link F and a trivial torus-knot T with a spin loop basis (e, e'), \exists an equivalence f: $\mathbb{R}^4 \rightarrow \mathbb{R}^4$ from F to F(D × I, D' × I)# T such that

f(∂D, ∂D')= (e, e').

<u>Lemma 2.4 ([K1])</u>. Let $(D \times I, D' \times I)$ be an O2-handle pair on a surface-link F such that D is an immersed disk. Then there is an embedded 2-handle $D^* \times I$ on F with $(\partial D^*) \times I = (\partial D) \times I$ such that $(D^* \times I, D' \times I)$ is an O2-handle pair on F.

3. Uniqueness of an orthogonal 2-handle pair

A surface-link F has <u>only unique O2-handle pair in</u> <u>the rigid sense</u> if for \forall O2-handle pairs (D × I, D' × I) and (E × I, E' × I) on F with (∂ D) × I = (∂ E) × I and (∂ D') × I = (∂ E') × I, ∃ an equivalence f: R⁴ → R⁴ keeping F^c fixed such that f(D × I)= E × I and f(D' × I)= E' × I.

A surface-link F has <u>only unique O2-handle pair in</u> <u>the soft sense</u> if for \forall O2-handle pairs (D × I, D' × I) and (E × I, E' × I) on F attached to the same component, \exists an equivalence f: R⁴ \rightarrow R⁴ from F(D × I, D' × I) to F (E × I, E' × I).

Theorem 3.1 ([K1]).

For \forall O2-handle pairs (D × I, D' × I) and (E × I, E' × I) on F with (∂ D) × I = (∂ E) × I and (∂ D') × I = (∂ E') × I, \exists an ambient isotopy $f_t : R^4 \rightarrow R^4$ (t \in [0,1]) keeping F^c fixed such that $f_0 = 1$ and

 $f_1 (D \times I) = E \times I$ and $f_1 (D' \times I) = E' \times I$. Thus, \forall surface-link has only unique O2-handle pair in the rigid sense.

<u>Theorem 3.3 ([K2])</u>. ∀ surface-link has only unique O2-handle pair in the soft sense.

<u>4. Main result: Cancelling the stableness</u>

The following is a characterization of a ribbon surfacelink:

Lemma 4.1 ([K2]). A surface-link F is ribbon if and only if \exists a punctured handlebody system V in R⁴ such that $\partial V = F \cup O$ for a trivial S²-link O with $F \cap O = \emptyset$. Call V a <u>semi-unknotted punctured handlebody system</u> <u>(=: a SUPH system)</u> for F.

<u>Lemma 4.2([κ2])</u>. The following (1) and (2) hold.

- (1) ∀stable-ribbon surface-link is ribbon.
- (2) If F is a ribbon surface-link with an O2-handle pair
 (D × I, D' × I) on F, then F(D × I, D' × I) is a ribbon surface-link.

Theorem 3.3 (on uniqueness of the O2-handle pair in the soft sense) and Lemma 4.2 imply:

<u>Theorem 4.3 ([K2])</u>. A handle-irreducible summand F* of every surface-link F is a surface-link which is determined uniquely from F up to equivalences. Further, if F is stable-ribbon, then F* is ribbon. <u>Corollary 4.4 ([K2])</u>. If a connected sum F#F' of surface-links F and F' is a ribbon surface-link, then F and F' are ribbon surface-links.

Note. Every 1-knot K is a connected summand of a ribbon 1-knot.

Stabilized Triviality.

(1)([HK1979]) If a surface-knot F has $\pi_1(\mathbb{R}^4-\mathbb{F}) \cong \mathbb{Z}$, then \exists a stabilization $\overline{\mathbb{F}}$ of F is a trivial surface-knot.

(2)([K3]) If a surface-link F has a meridian-based free $\pi_1(\mathbb{R}^4$ -F), then \exists a stabilization \overline{F} of F is a trivial surface-link.

By Stabilized Triviality and Theorem 4.3, we have:

Corollary 4.5.

(1)([K1]) If a surface-knot F has $\pi_1(\mathbb{R}^4-F)\cong Z$, then F is a trivial surface-knot.

(2)([K3]) If a surface-link F has a meridian-based free $\pi_1(R^4$ -F), then F is a trivial surface-link.