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A brief review on virtual knot theory

Classical knot theory: Knot types={knot diagrams}/{Reidemeister

moves}

Ω1 Ω2 Ω3

Figure 1: Reidemeister moves

Virtual knot theory: Besides over crossing and under crossing, we

add another structure to a crossing point: virtual crossing

b

virtual crossing

Figure 2: virtual crossing 3 / 54



A brief review on virtual knot theory

Virtual knot types= {all virtual knot diagrams}/{generalized
Reidemeister moves}

Ω1

Ω′
1

Ω2

Ω′
2

Ω3

Ω′
3

Ωs
3

Figure 3: generalized Reidemeister moves
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A brief review on virtual knot theory

Flat virtual knots (or virtual strings by Turaev) can be regarded as

virtual knots without over/undercrossing information. More

precisely, a flat virtual knot diagram can be obtained from a virtual

knot diagram by replacing all real crossing points with flat crossing

points. By replacing all real crossing points with flat crossing

points in Figure 3 one obtains the flat generalized Reidemeister

moves. Then

Flat virtual knot types= {all flat virtual knot diagrams}/{flat
generalized Reidemeister moves}
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A brief review on virtual knot theory

Virtual knot theory was introduced by L. Kauffman. Roughly

speaking, there are two motivations to extend the classical knot

theory to virtual knot theory.

From the topological viewpoint, a classical knot is an embedding

of S1 into R3 up to isotopies. It is equivalent to replace the

ambient space R3 with S2 × [0, 1]. A virtual knot is an embedded

circle in the thickened closed orientable surface Σg × [0, 1] up to

isotopies and (de)stabilizations.

6 / 54



A brief review on virtual knot theory

Another motivation comes from realizing an arbitrary Gauss

diagram.

For a given classical knot diagram, there exists a unique Gauss

diagram corresponding to it. However, there exist some Gauss

diagrams which cannot be realized as a classical knot diagram.

Therefore one has to add some virtual crossing points.
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A brief review on virtual knot theory

Given a virtual knot diagram, a Gauss diagram is:

I a circle together with some chords, each chord connecting the

preimages of a crossing point

I an orientation from the preimage of the overcrossing to the

preimage of the undercrossing

I the writhe of the each crossing point

+

+

Figure 4: virtual trefoil and its Gauss diagram
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A brief review on virtual knot theory

The importance of realizing all Gauss diagrams also comes from

Goussarov, Polyak and Viro’s work on finite type invariants1。They

show that that any integer-valued finite type invariant of degree n

of a (long) knot D can be expressed in terms of Gauss diagrams.

Note that not all Gauss diagrams can be realized by classical

knots, it seems more reasonable to study the finite type invariants

in the world of virtual knots.

1M. Goussarov, M. Polyak, O. Viro,

Finite-type invariants of classical and virtual knots, Topology (2000), 1045-1068.
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Two virtual knot invariants derived from the chord index

In 2016, Cheng proposed the chord index axioms2, which is a

generalization of the parity axioms of Manturov3.

Assume for each real crossing point c of a diagram, we can assign

an index to it(e.g. an integer, a polynomial, a group etc.). We say

this index satisfies the chord index axioms if it satisfies the

following five conditions:

2Z. Cheng, The chord index, its definitions, applications and generalizations,

arXiv:1606.01446.
3V. Manturov, Parity in knot theory, Sbornik: Mathematics 201 (2010), no. 5,

693-733.
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Two virtual knot invariants derived from the chord index

1. The real crossing point involved in Ω1 has a fixed index;

2. The two crossing points involved in Ω2 have the same indices;

3. The indices of the three crossing points involved in Ω3 are

preserved under Ω3 respectively;

4. The index of the real crossing point involved in Ωs
3 is

preserved under Ωs
3;

5. The index of any real crossing point not involved in a

generalized Reidemeister move is preserved under this move.
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Two virtual knot invariants derived from the chord index

Our aim is trying to construct some chord index type of invariants.

More precisely, Using the flat virtual knot/link-valued chord index

we introduce two invariants, which take values in the following

module of ℳu
1 and ℳo

2 .

ℳu
1 = the free Z-module generated by the set of all unoriented

flat virtual knots.

ℳo
2 = the free Z-module generated by the set of all oriented

2-component flat virtual links.
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Two virtual knot invariants derived from the chord index

One can compare these invariants with some other flat virtual

knots/graphs-valued virtual knot invariants. For example, the

polynomial ∇(K ) of Turaev which takes values in the polynomial

algebra generated by nontrivial flat virtual knots4, or the sl(3)

invariant introduced by Kauffman and Manturov, which is valued

in a module generated by graphs5.

4V. Turaev, Virtual strings, Annales de linstitut Fourier (2004), no. 7, 2455-2525.
5L. H. Kauffman, V. Manturov,

A graphical construction of the sl(3) invariant for virtual knots,

Quantum Topology (2014), no. 4, 523-539.
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Two virtual knot invariants derived from the chord index

An ℳu
1-valued virtual knot invariant

Let K be a virtual knot diagram and c a real crossing point.

Associate it a unoriented flat virtual knot ̃︀Kc : There are two kinds

of resolution on c . Use 0-smoothing to denote the one which

preserves the number of components and 1-smoothing to denote

the other.

c
0-smoothing 1-smoothing

Figure 5: two kinds of resolution
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Two virtual knot invariants derived from the chord index

Applying 0-smoothing at c we get another virtual knot, which is

unoriented even if K is oriented. Use Kc to denote this unoriented

virtual knot and ̃︀Kc to denote the corresponding flat virtual knot.

Then we have

Theorem 2.1 ̃︀Kc satisfies the chord index axioms.
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Two virtual knot invariants derived from the chord index

Proof of Theorem 2.1:

1. If c is a crossing point appearing in Ω1, after performing

0-smoothing at c , it is easy to observe that ̃︀Kc = ̃︀K without

considering the orientation, which is a fixed element in ℳu
1 .
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Two virtual knot invariants derived from the chord index

Proof of Theorem 2.1(continue):

2. Consider the two crossing points in Ω2, say c1 and c2. As

illustrated in the next figure, in both cases the chord indices ̃︀Kc1

and ̃︀Kc2 are equivalent as flat virtual knots.

c1

c2

c1

c2

K̃c1 K̃c2 K̃c1 K̃c2

Figure 6: Resolutions of crossing points in Ω2
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Two virtual knot invariants derived from the chord index

Proof of Theorem 2.1(continue):

3. Assume K and K ′ are related by an Ω3 move, use c1, c2, c3 to

denote the three crossing points in K , and c ′1, c
′
2, c

′
3 to denote the

corresponding crossing points in K ′. It is easy to see that

̃︀Kc1 =
̃︁K ′

c ′1
, ̃︀Kc2 =

̃︁K ′
c ′2

and ̃︀Kc3 =
̃︁K ′

c ′3
from the figure below.

c1

c′1

c3 c2

c′2 c′3

K

K ′ K̃ ′
c′
1

K̃ ′
c′
2

K̃ ′
c′
3

K̃c1 K̃c2 K̃c3

Figure 7: Resolutions of crossing points in Ω3
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Two virtual knot invariants derived from the chord index

Proof of Theorem 2.1(continue):

4. For Ωs
3, there exist two possibilities: in one case one chord index

can be obtained from the other one by two flat Ω′
2-moves, in the

other case two chord indices are the same.

Figure 8: resolution of crossing point in Ωs
3
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Two virtual knot invariants derived from the chord index

Proof of Theorem 2.1(continue):

5. If a crossing point c is not involved in the move, then the two

chord indices before and after the move are related by a flat

version of this move.
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Two virtual knot invariants derived from the chord index

Theorem 2.2: Let K be a virtual knot diagram, then

ℱ(K ) =
∑︀
c
w(c)̃︀Kc − w(K )̃︀K ∈ ℳu

1 is a virtual knot invariant.

Here ̃︀K should be understood as the corresponding flat virtual knot

of K without the orientation, the sum runs over all the real

crossing points of K , and w(c),w(K ) denote the writhe of c and

K respectively.
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Two virtual knot invariants derived from the chord index

Proof of Theorem 2.2:

Notice that ̃︀Kc = ̃︀K if c is the crossing point involved in Ω1 and

the writhes of the two crossing points involved in Ω2 are distinct.

The result follows directly from the chord index axioms.
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Two virtual knot invariants derived from the chord index

Corolarry 2.1 If K is a classical knot, then ℱ(K ) = 0.

Actually, since any flat virtual knot diagram with one or two flat

crossing points represent the unknot. It follows that if the number

of real crossing points of K is less than or equal to 2, then

ℱ(K ) = 0.
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Two virtual knot invariants derived from the chord index

Example 2.1 Let K be the virtual knot described in the figure

below. Direct calculation shows that ℱ(K ) = K̃ishino + 4U − 5̃︀K ,

where K̃ishino denotes the Kishino flat virtual knot and U the

unknot. Since K̃ishino is nontrivial, we conclude that ℱ(K ) ̸= 0.

Figure 9: A virtual knot K with nontrivial ℱ
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Two virtual knot invariants derived from the chord index

Figure 10: Kishino flat virtual knot

Remark Actually, in Example 2.1, the flat knots K̃ishino and ̃︀K are

also different. They can be distinguished by a flat invariant

BK (t, s) defined by Dr. M. Xu6.

6M. Xu, Writhe polynomial for virtual links, arXiv:1812.05234..
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Two virtual knot invariants derived from the chord index

Remark The invariant ℱ(K ) can be easily extended to an invariant

of n-component virtual links (n ≥ 2). In this case we need change

ℳu
1 to a free Z-module ℳu generated by all unoriented flat

virtual links. Now the the chord index of a self-crossing point is a

unoriented n-component flat virtual link, and the chord index of a

mixed-crossing point is a unoriented (n − 1)-component flat virtual

link.
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Two virtual knot invariants derived from the chord index

An ℳo
2-valued virtual knot invariant

Let K be a virtual knot diagram and c a real crossing point of K .

Now performing 1-smoothing at c transforms K into an oriented

2-component virtual link Lc . Denote ̃︀Lc the corresponding flat

virtual link, which lies in ℳo
2 . Then we have:

Theorem 2.3 ̃︀Lc satisfies the chord index axioms.
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Two virtual knot invariants derived from the chord index

Similar to Theorem 2.2, this chord index also provides us a virtual

knot invariant.

Theorem 2.4 Let K be a virtual knot, then

ℒ(K ) =
∑︀
c
w(c)̃︀Lc − w(K )(̃︀K ∪ U) ∈ ℳ2 defines a virtual knot

invariant.

Here each ̃︀Lc should be understood as a unordered 2-component

flat virtual link.
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Two virtual knot invariants derived from the chord index

The invariants ℱ(K ) and ℒ(K ) contain some information about

”mirror images” of virtual knots.

Proposition 2.1 Let K be an oriented virtual knot diagram, if we

use r(K ) to denote the diagram obtained from K by reversing the

orientation, and m(K ) denotes the diagram obtained from K by

switching all real crossing points, then we have

ℱ(r(K )) = ℱ(K ) and ℱ(m(K )) = −ℱ(K ).

ℒ(r(K )) = r(ℒ(K )) and ℒ(m(K )) = −ℒ(K ).
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Two virtual knot invariants derived from the chord index

It is evident that ℒ(K ) = 0 if K is a classical knot. But unlike

ℱ(K ), which vanishes on virtual knots with two real crossing

points, ℒ(K ) is able to distinguish the virtual trefoil knot from the

unknot.

Example 2.2 Consider the virtual trefoil knot K . We have

ℒ(K ) = 2̃︁HL− 2(U ∪ U), here ̃︁HL denotes the flat virtual Hopf

link which can be obtained from the classical Hopf link diagram by

replacing the two real crossing points with one virtual crossing

point and one flat crossing point.

To prove ℒ(K ) ̸= 0, it suffices to show that ̃︁HL is nontrivial.
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Two virtual knot invariants derived from the chord index

Define a flat linking number of a unordered 2-component flat

virtual link as follows:

For a unordered 2-component flat virtual link ̃︀L = ̃︀K1 ∪ ̃︀K2. Denote

C12 to be the set of all flat crossing points between ̃︀K1 and ̃︀K2.

Replacing each flat crossing point in C12 with a real crossing point

such that the over-strand belongs to ̃︀K1, then define the flat

linking number by lk(̃︀L) = |
∑︀

c∈C12

w(c)|, where w(c) means the

writhe of c .

This definition does not depend on the order of ̃︀K1 and ̃︀K2, and it

is invariant under all flat generalized Reidemeister moves. Clearly,

lk(̃︁HL) = 1 and it follows that ℒ(K ) ̸= 0.
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Two virtual knot invariants derived from the chord index

Theorem 2.2 and Theorem 2.4 can be regarded as a general

method to construct virtual invariants. Combining them with some

concrete flat invariants we may obtain concrete and sometimes

much more usable virtual knot invariants. Here we will show that

several known invariants can be recovered from our invariants.
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Two virtual knot invariants derived from the chord index

Example 2.3 The writhe polynomial WK (t) is defined

independently by Cheng-Gao, Dye, Kauffman, Im-Kim-Lee and

Satoh-Taniguchi. The key point to define WK (t) is the chord

index, which assigns an integer Ind(c) to each real crossing point c

of a virtual knot diagram. Here we mainly follow the approach of

Folwaczny and Kauffman7.

7L. Folwaczny, L. Kauffman,

A linking number definition of the affine index polynomial and applications,

JKTR 22 (2013), no. 12, 1341004.
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Two virtual knot invariants derived from the chord index

Assuming K is a virtual knot diagram and c a real crossing point.

Applying 1-smoothing to c will get a 2-component virtual link

Lc = K1 ∪ K2.

The order of these two components is arranged as follows: refer to

Figure 5, if c is positive we call the component on the left side K1

and those on the right side K2; Conversely, if c is negative we use

K1 to denote the right side component and use K2 to denote the

left side component.

All the real crossing points between K1 and K2 can be divided into

two sets C12 and C21. Where C12 denotes the set of real crossing

points where the over-strands belong to K1 and C21 those the

over-strands belong to K2.
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Two virtual knot invariants derived from the chord index

Now we can define the index of c as

Ind(c) =
∑︀

c∈C12

w(c)−
∑︀

c∈C21

w(c)

and the writhe polynomial as

WK (t) =
∑︀
c
w(c)t Ind(c) − w(K ).

According to the definition of the index, Ind(c) is invariant under

the crossing change of any real crossing point of Lc . Hence it is an

invariant of ̃︀Lc . So WK (t) is a special case of ℒ(K ).
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Two virtual knot invariants derived from the chord index

Example 2.4 The next example concerns the sequence of 2-variable

polynomial invariants LnK (t, l) recently introduced by

Kaur-Prabhakar-Vesnin8. We will show that this sequence of

polynomial invariants combines some information of ℱ(K ) and

ℒ(K ).

8K. Kaur, M. Prabhakar, A. Vesnin,

Two-variable polynomial invariants of virtual knots arising from flat virtual knot invariants,

arXiv:1803.05191.
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Two virtual knot invariants derived from the chord index

Let K be a virtual knot diagram and c a real crossing point.

Assume the writhe polynomial WK (t) =
∑︀
n
ant

n, it is known that

WK (t)−WK (t
−1) is a flat virtual knot invariant.

WK (t)−WK (t
−1) has the form of

∑︀
n
(an − a−n)t

n, and the

coefficient of tn equals an − a−n, which is also a flat virtual knot

invariant. It is called the n-th dwrithe and denote by ∇Jn(K ) by

Kaur-Prabhakar-Vesnin.

Now the polynomials LnK (t, l) defined by Kaur-Prabhakar-Vesnin

are

LnK (t, l) =
∑︀
c
w(c)t Ind(c)l |∇Jn(Kc )| − w(K )l |∇Jn(K)|.
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Two virtual knot invariants derived from the chord index

It is easy to check that t Ind(c)l |∇Jn(Kc )| satisfies the chord index

axioms, and if a crossing point is involved in Ω1 then the index

equals l |∇Jn(K)|.

As we mentioned above, Ind(c) is a flat virtual knot invariant of Lc

and |∇Jn(Kc)| is a flat virtual knot invariant of Kc , hence LnK (t, l)

can be regarded as a mixture of some information coming from

ℱ(K ) and ℒ(K ).
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From the viewpoint of finite type invariant

Recall that a finite type invariant (or Vassiliev invariant) of degree

n is a (virtual) knot invariant valued in an Abelian group which

vanishes on all singular knots with k singularities provided that

k ≥ n + 1.

More precisely, if f : K → A is a virtual knot invariant which

associates each virtual knot with an element in an Abelian group

A. Then we can extend f from virtual knots to singular virtual

knots via the following recursive relation

f (n)(K ) = f (n−1)(K+)− f (n−1)(K−),

here K+(K−) is obtained from K , a singular virtual knot with n

singularities, by replacing a singular point with a positive

(negative) crossing point. We set f (0) = f as the initial condition.
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From the viewpoint of finite type invariant

Now we say f is a finite type invariant of degree n if f (n+1)(K ) = 0

for any singular virtual knot K with n + 1 singularities, and there

exists a singular virtual knot K with n singularities which satisfies

f (n)(K ) ̸= 0.

For classical knots, this definition coincides with the definition

given by Birman and Lin9

9J. Birman, X. Lin, Knot polynomials and Vassiliev’s invariants, Invent. Math.,

1993, 225-270.
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From the viewpoint of finite type invariant

Theorem 3.1 Both ℱ(K ) and ℒ(K ) are finite type invariants of

degree one.

Proof of Theorem 3.1:

We only prove that ℱ(K ) is a finite type invariant of degree one,

the other proof is similar.

We need to show that ℱ (2) vanishes on any singular virtual knot

with two singularities and there is a singular virtual knot with one

singularity which has nontrivial ℱ (1).
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From the viewpoint of finite type invariant

Proof of Theorem 3.1(continue):

Let K be a virtual knot diagram and c1, c2 be two real crossing

points. Without loss of generality, we assume that

w(c1) = w(c2) = +1. We use K−+(K+−) to denote the virtual

knot diagram obtained from K by switching c1(c2), and use K−−

to denote the diagram obtained from K by switching both c1 and

c2, and K++ = K .

The recursive relation f (n)(K ) = f (n−1)(K+)− f (n−1)(K−) and

f (2)(K ) = 0 is now equivalent to

ℱ(K++)−ℱ(K+−)−ℱ(K−+) + ℱ(K−−) = 0.
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From the viewpoint of finite type invariant

Proof of Theorem 3.1(continue):

One computes

ℱ(K++)−ℱ(K+−)−ℱ(K−+) + ℱ(K−−)

= (
∑︀
c
w(c)̃︂K++c − w(K++)̃︂K++)− (

∑︀
c
w(c) ̃︂K+−c − w(K+−) ̃︂K+−)

−(
∑︀
c
w(c) ̃︂K−+c − w(K−+) ̃︂K−+) + (

∑︀
c
w(c) ̃︂K−−c − w(K−−) ̃︂K−−)

=
∑︀
c
w(c) ̃︂K++c −

∑︀
c
w(c) ̃︂K+−c −

∑︀
c
w(c) ̃︂K−+c +

∑︀
c
w(c) ̃︂K−−c

= (̃︂K++c1
+ ̃︂K++c2

)−(̃︂K+−c1
− ̃︂K+−c2

)−(−̃︂K−+c1
+ ̃︂K−+c2

)+(− ̃︂K−−c1
− ̃︂K−−c2

)

= (̃︂K++c1
− ̃︂K−−c1

) + (̃︂K++c2
− ̃︂K−−c2

) + (̃︂K−+c1
− ̃︂K+−c1

) + (̃︂K+−c2
− ̃︂K−+c2

)

= 0 + 0 + 0 + 0

= 0
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From the viewpoint of finite type invariant

Proof of Theorem 3.1(continue):

On the other hand, consider the positive Kishino virtual knot K

below

Figure 11: positive Kishino knot K
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From the viewpoint of finite type invariant

Proof of Theorem 3.1(continue):

Denote the positive crossing point on the top left of K by c . We

still use K+ to denote K and use K− to denote the diagram after

switching c . Then we have

ℱ(K+)−ℱ(K−)

= (
∑︀
c
w(c)̃︁K+c − w(K+)̃︁K+)− (

∑︀
c
w(c)̃︁K−c − w(K−)̃︁K−)

= 2U − 2K̃ishino

̸= 0
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Flat virtual knot invariants

Recall that we have introduced two virtual knot invariants ℱ(K )

and ℒ(K ), which take values in ℳu
1 and ℳo

2 respectively.

However, in general it is still not easy to distinguish two elements

in ℳu
1 or ℳo

2 . To this end, we extend the main idea of ℱ(K ) and

ℒ(K ) from virtual knots to flat virtual knots, and we can define

two invariants for flat virtual knots, which take values in ℳo
1 and

ℳo
2 respectively. Here ℳo

1 denotes the free Z-module generated

by all oriented flat virtual knots, and as before, ℳo
2 is referred to

the free Z-module generated by all oriented 2-component flat

virtual links.
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Flat virtual knot invariants

Given an oriented flat virtual knot diagram ̃︀K , we can define its

Gauss diagram G (̃︀K ). At first glance, since there is no

over/undercrossing information, we can just connect the two

preimages of each flat crossing with a chord without direction and

sign. However, we can still assign a direction to each chord as

follows:

Replacing each flat crossing point with a positive crossing point

and then add an arrow to each chord in G (̃︀K ), directed from the

preimage of the overcrossing to the preimage of the undercrossing.

Now we obtain a Gauss diagram G (̃︀K ) of which each chord has a

direction but no signs.
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Flat virtual knot invariants

The following result is well-known, see for example10.

Lemma 4.1 Each G (̃︀K ) corresponds to a unique flat virtual knot ̃︀K .

10V. Turaev, Virtual strings, Annales de linstitut Fourier (2004), no. 7, 2455-2525.
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Flat virtual knot invariants

Next, we give a sign to each chord or flat crossing. For a given flat

virtual knot diagram ̃︀K , let us consider the corresponding positive

virtual knot diagram, say K+. Now we can use the index of

Example 2.3 to assign an integer Ind(c) to each positive crossing

point of K+.

For the corresponding flat crossing point c in ̃︀K , we define its

writhe as follows

w(c) = sgn(Ind(c)) =

⎧
⎨
⎩

|Ind(c)|
Ind(c) if Ind(c) ̸= 0;

0 if Ind(c) = 0.
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Flat virtual knot invariants

Define the writhe of a flat virtual knot as w(̃︀K ) =
∑︀
c
w(c), where

the sum runs over all flat crossing points.

It is easy to check that

Lemma 4.2 w(̃︀K ) is a flat virtual knot invariant.
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Flat virtual knot invariants

Let c be a flat crossing point of ̃︀K . Similar as in section 2, we can

perform 0-smoothing or 1-smoothing to resolve this flat crossing

point to get a unoriented flat virtual knot ̃︀Kc or an oriented

2-component flat virtual link ̃︀Lc . Now for ̃︀Kc we fix an orientation

according to the Figure below.

c
w(c) > 0 w(c) < 0

Figure 12: The orientation of ̃︀Kc
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Flat virtual knot invariants

Define ̃︀ℱ(̃︀K ) =
∑︀
c
w(c)̃︀Kc ∈ ℳo

1

̃︀ℒ(̃︀K ) =
∑︀
c
w(c)̃︀Lc ∈ ℳo

2 .

Then we have

Theorem 4.1 ̃︀ℱ(̃︀K ) and ̃︀ℒ(̃︀K ) are both flat virtual knot invariants.
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Flat virtual knot invariants

Proposition 4.1 Suppose ̃︀ℱ(̃︀K ) =
n∑︀

i=1
ai ̃︀Ki (ai ̸= 0), then ̃︀Ki ̸= ̃︀K

for any 1 ≤ i ≤ n.

Proof If ̃︀K is a unknot, then we have ̃︀ℱ(̃︀K ) = 0 ̸= ̃︀K . If ̃︀K is

nontrivial, we choose a minimal diagram of it, i.e. a diagram which

realizes the minimal flat crossing number. According to the

definition of ̃︀ℱ(̃︀K ), each ̃︀Ki has strictly fewer flat crossing points,

hence it cannot be equivalent to ̃︀K .

Remark This proposition says that the map ̃︀ℱ turns an oriented

flat virtual knot K into a linear combination of ”strictly simpler”

flat virtual knots. Therefore sometimes one can use known

nontrivial flat virtual knots to detect the nontrivially of some more

complicated flat virtual knots.
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Thank you!
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