3-submanifolds of S^3 which admit complete surface systems (CSS)

Fengchun Lei (雷逢春)
(Joint with Fengling Li and Yan Zhao)

School of Mathematical Sciences
Dalian University of Technology, Dalian, China
fclei@dlut.edu.cn

The 6th China-Russia Conference on Knot Theory and Related Topics

Novosibirsk, Russia, June 17-21, 2019
Background and Preliminaries

1. Some Definitions and fundamental facts on CCS and CSS
2. Brief review on Heegaard splittings

2. 3-submanifolds in S^3 which admitting CSCS
1.1 Some Definitions and fundamental facts on CCS and CSS

Def: Let $F = F_n$ be a closed connected orientable surface of genus $n \geq 1$. A complete curve system (CCS, for simplicity) on F is a collection $\mathcal{J} = \{J_1, \cdots, J_n\}$ of n pairwise disjoint simple closed curves on F such that the surface obtained by cutting F open along \mathcal{J} is a $2n$-punctured sphere.

On the surface F genus 2 as above, $\{\alpha_1, \alpha_2\}$, $\{\alpha_1, \beta_2\}$, $\{\beta_1, \alpha_2\}$, $\{\beta_1, \beta_2\}$, $\{\alpha_1, \gamma_1\}$, and $\{\alpha_2, \gamma_1\}$ are examples of CCS for F.
Def: Let $\mathcal{J} = \{J_1, \cdots, J_n\}$ be a CCS on F. For $1 \leq i \neq j \leq n$, let γ be a simple arc on S such that $\gamma \cap J_i$ is an end point of γ, $\gamma \cap J_j$ is another end point of γ, and the interior of γ is disjoint from $\bigcup_{1 \leq i \leq n} J_i$. Let $P = N(J_i \cup \gamma \cup J_j)$ be a small compact regular neighborhood of $J_i \cup \gamma \cup J_j$ on S. Denote by $J_{ij} = J_i \# \gamma J_j$ the boundary component of P which is not isotopic to J_i or J_j on P, and call it the band sum of J_i and J_j along γ. We may assume that J_{ij} is disjoint from the curves in \mathcal{J}. Replace J_i or J_j by J_{ij} in \mathcal{J} to get a new CCS \mathcal{J}' on S. We call \mathcal{J}' a band sum move of \mathcal{J}.
It is clear that if \mathcal{J}' is a band sum move of \mathcal{J}, then \mathcal{J} is also a band sum move of \mathcal{J}'.

Def: Two CCS C_1 and C_2 on a closed surface S of genus $n > 0$ are called equivalent if one can be obtained from another by a finite number of band sum moves and isotopies.
It is clear that if \mathcal{J}' is a band sum move of \mathcal{J}, then \mathcal{J} is also a band sum move of \mathcal{J}'.

Def: Two CCS \mathcal{C}_1 and \mathcal{C}_2 on a closed surface S of genus $n > 0$ are called **equivalent** if one can be obtained from another by a finite number of band sum moves and isotopies.
Def: Let M be a compact 3-manifold with a single boundary component F of genus $g(F) = n \geq 1$. Let $\mathcal{J} = \{J_1, \cdots, J_n\}$ be a CCS on F. If there exists a collection of pairwise disjoint compact connected orientable surfaces S_1, \cdots, S_n properly embedded in M such that $\partial S_i = J_i$ for each $1 \leq i \leq n$, we call $S = \{S_1, \cdots, S_n\}$ a complete surface system (CSS) in M, and call \mathcal{J} a complete spanning curve system (CSCS) for M on F. Sometimes we say that M admits a CSS or CSCS.
Example 1: A handlebody H of genus n is a 3-manifold which admits a complete disk system $\mathcal{D} = \{D_1, \cdots, D_n\}$ such that the manifold obtained by cutting H open along \mathcal{D} is a 3-ball.

Clearly, \mathcal{D} is a CSS for handlebody H, usually called a complete disk system for H, and $\partial \mathcal{D} = \{\partial D_1, \cdots, \partial D_n\}$ is a CSCI for H.
Example 1: A handlebody H of genus n is a 3-manifold which admits a complete disk system $\mathcal{D} = \{D_1, \cdots, D_n\}$ such that the manifold obtained by cutting H open along \mathcal{D} is a 3-ball.

Clearly, \mathcal{D} is a CSS for handlebody H, usually called a complete disk system for H, and $\partial \mathcal{D} = \{\partial D_1, \cdots, \partial D_n\}$ is a CPCS for H.

![Diagrams of handlebodies and disk systems]
Some other examples of CSCS

Example 2: Let K be a knot in S^3, $N(K)$ a regular neighbourhood of K in S^3, and $M_K = \overline{M \setminus N(K)}$ the complement of K. Let S' be a Seifert surface of K in S^3 with $S' \cap N(K)$ an annulus. Let $S = S' \cap M_K$, and $J = \partial S$. Then J is a CSCS for M_K, and S is a CSS for M_K.

Example 3: Let $L = \{l_1, \ldots, l_n\}$ be a boundary link in S^3. L bounds a disjoint union of n Seifert surfaces S_1, \ldots, S_n in S^3 such that l_i bounds S_i for $i = 1, \ldots, n$. Choose a point P in S^3 so that P is not contained in any S_i, $1 \leq i \leq n$. For each i, $1 \leq i \leq n$, choose a simple arc α_i in S^3 connecting P and a point $P_i \in l_i$, such that $\alpha_i \cap S_i = \alpha_i \cap l_i = P_i$, and for $i \neq j$, $\alpha_i \cap \alpha_j = \{P\}$. Set $\Gamma = \bigcup_{i=1}^n \alpha_i \cup l_i$. Then Γ is a connected graph with $\chi(\Gamma) = -n$. Let H be a regular neighborhood of Γ in S^3. H is a handlebody of genus n. Clearly, $M = S^3 \setminus H$ admits a CSCS on ∂M.

Fengchun Lei (雷逢春) (Joint with Fengling Li and Yan Zhao)

3-submanifolds of S^3 which admits CSS
Example 2: Let K be a knot in S^3, $N(K)$ a regular neighbourhood of K in S^3, and $M_K = \overline{M \setminus N(K)}$ the complement of K. Let S' be a Seifert surface of K in S^3 with $S' \cap N(K)$ an annulus. Let $S = S' \cap M_K$, and $J = \partial S$. Then J is a CSCS for M_K, and S is a CSS for M_K.

Example 3: Let $L = \{l_1, \cdots, l_n\}$ be a boundary link in S^3. L bounds a disjoint union of n Seifert surfaces S_1, \cdots, S_n in S^3 such that l_i bounds S_i for $i = 1, \cdots, n$. Choose a point P in S^3 so that P is not contained in any S_i, $1 \leq i \leq n$. For each i, $1 \leq i \leq n$, choose a simple arc α_i in S^3 connecting P and a point $P_i \in l_i$, such that $\alpha_i \cap S_i = \alpha_i \cap l_i = P_i$, and for $i \neq j$, $\alpha_i \cap \alpha_j = \{P\}$. Set $\Gamma = \bigcup_{i=1}^n \alpha_i \cup l_i$. Then Γ is a connected graph with $\chi(\Gamma) = -n$. Let H be a regular neighborhood of Γ in S^3. H is a handlebody of genus n. Clearly, $M = S^3 \setminus H$ admits a CSCS on ∂M.

Fengchun Lei (雷逢春) (Joint with Fengling Li and Yan Zhao)
Question: For a 3-submanifold M in S^3 which admits a CSS, can M be obtained from a boundary link in a way as above?
Def: Let $S = \{S_1, \ldots, S_n\}$, $S' = \{S'_1, \ldots, S'_n\}$ be two CSS for 3-manifold M, and \mathcal{J}, \mathcal{J}', the corresponding CSCSs on $F = \partial M$. We say that S and S' are equivalent if \mathcal{J} and \mathcal{J}' are equivalent on F.

Remark:

1. The equivalence of CSS for M only depends on the equivalence of their corresponding boundaries.

2. For a CSCS \mathcal{J} for a 3-manifold M, the spanned surfaces of \mathcal{J} in M may not unique. For example, the knot complements. We emphasize the existence of a CSS, not the individual of the CSS. That’s the reason why we use CSCS to denote CSS.
Def: Let $S = \{S_1, \cdots, S_n\}$, $S' = \{S'_1, \cdots, S'_n\}$ be two CSS for 3-manifold M, and \mathcal{J}, \mathcal{J}', the corresponding CSCSs on $F = \partial M$. We say that S and S' are equivalent if \mathcal{J} and \mathcal{J}' are equivalent on F.

Remark:

1. The equivalence of CSS for M only depends on the equivalence of their corresponding boundaries.

2. For a CSCS \mathcal{J} for a 3-manifold M, the spanned surfaces of \mathcal{J} in M may not unique. For example, the knot complements. We emphasize the existence of a CSS, not the individual of the CSS. That’s the reason why we use CSCS to denote CSS.
Equivalence of CSS

Def: Let $S = \{S_1, \cdots, S_n\}$, $S' = \{S'_1, \cdots, S'_n\}$ be two CSS for 3-manifold M, and J, J', the corresponding CSCSs on $F = \partial M$. We say that S and S' are **equivalent** if J and J' are equivalent on F.

Remark:

1. The equivalence of CSS for M only depends on the equivalence of their corresponding boundaries.

2. For a CSCS J for a 3-manifold M, the spanned surfaces of J in M may not unique. For example, the knot complements. We emphasize the existence of a CSS, not the individual of the CSS. That’s the reason why we use CSCS to denote CSS.
The following facts about handlebodies are well known:

Proposition

Let H be a handlebody of genus $n \geq 1$.

1. The only complete surface system in H is the complete disk system.

2. Let $D = \{D_1, \ldots, D_n\}$ be a complete disk system for H, and $J = \partial D = \{\partial D_1, \ldots, \partial D_n\}$. Then any CCS \mathcal{K} on ∂H which is equivalent to J is also a CSS for H, therefore the boundary of a complete disk system for H.

3. Any two complete disk systems for H are equivalent. Thus, the complete disk systems for H are unique up to the equivalence.
Fundamental properties

The following facts about handlebodies are well known:

Proposition

Let H be a handlebody of genus $n \geq 1$.

1. The only complete surface system in H is the complete disk system.

2. Let $\mathcal{D} = \{D_1, \cdots, D_n\}$ be a complete disk system for H, and $J = \partial \mathcal{D} = \{\partial D_1, \cdots, \partial D_n\}$. Then any CCS \mathcal{K} on ∂H which is equivalent to J is also a CSS for H, therefore the boundary of a complete disk system for H.

3. Any two complete disk systems for H are equivalent. Thus, the complete disk systems for H are unique up to the equivalence.
The following facts about handlebodies are well known:

Proposition

Let \(H \) be a handlebody of genus \(n \geq 1 \).

1. The only complete surface system in \(H \) is the complete disk system.

2. Let \(\mathcal{D} = \{D_1, \ldots, D_n\} \) be a complete disk system for \(H \), and \(\mathcal{J} = \partial \mathcal{D} = \{\partial D_1, \ldots, \partial D_n\} \). Then any CCS \(\mathcal{K} \) on \(\partial H \) which is equivalent to \(\mathcal{J} \) is also a CSS for \(H \), therefore the boundary of a complete disk system for \(H \).

3. Any two complete disk systems for \(H \) are equivalent. Thus, the complete disk systems for \(H \) are unique up to the equivalence.
The following facts about handlebodies are well known:

Proposition

Let H be a handlebody of genus $n \geq 1$.

(1) The only complete surface system in H is the complete disk system.

(2) Let $\mathcal{D} = \{D_1, \cdots, D_n\}$ be a complete disk system for H, and $\mathcal{J} = \partial \mathcal{D} = \{\partial D_1, \cdots, \partial D_n\}$. Then any CCS \mathcal{K} on ∂H which is equivalent to \mathcal{J} is also a CSS for H, therefore the boundary of a complete disk system for H.

(3) Any two complete disk systems for H are equivalent. Thus, the complete disk systems for H are unique up to the equivalence.
Fundamental properties

Def: Let $F = F_n$ be a closed connected orientable surface of genus $n \geq 1$. A general complete curve system (GCCS) on F is a collection $\mathcal{J} = \{J_1, \cdots, J_k\}$ of k pairwise disjoint simple closed curves on F which contains a CCS as a subset.

The previous proposition can be generalized directly as follows:

Proposition

Let M be a compact 3-manifold with a single boundary component F of genus $g(F) = n \geq 1$. Let $K \subset F$ be a CSCS for M. Then any CCS \mathcal{J} on F which is equivalent to K is also a CSCS for M.

Moreover, for any GCCS $\mathcal{J}' = \{J_1, \cdots, J_k\}$ on F which contains \mathcal{J} as a subset, there exists a collection of pairwise disjoint compact orientable surfaces S_1, \cdots, S_k properly embedded in M, such that $\partial S_i = J_i$ for each $1 \leq i \leq k$.

Fengchun Lei (雷逢春) (Joint with Fengling Li and Yan Zhao) 3-submanifolds of S^3 which admits CSS
Def: Let $F = F_n$ be a closed connected orientable surface of genus $n \geq 1$. A general complete curve system (GCCS) on F is a collection $\mathcal{J} = \{J_1, \cdots, J_k\}$ of k pairwise disjoint simple closed curves on F which contains a CCS as a subset.

The previous proposition can be generalized directly as follows:

Proposition

Let M be a compact 3-manifold with a single boundary component F of genus $g(F) = n \geq 1$. Let $\mathcal{K} \subset F$ be a CSCS for M. Then any CCS \mathcal{J} on F which is equivalent to \mathcal{K} is also a CSCS for M.

Moreover, for any GCCS $\mathcal{J}' = \{J_1, \cdots, J_k\}$ on F which contains \mathcal{J} as a subset, there exists a collection of pairwise disjoint compact orientable surfaces S_1, \cdots, S_k properly embedded in M, such that $\partial S_i = J_i$ for each $1 \leq i \leq k$.
Let S be a connected closed orientable surface of genus n in a closed orientable 3-manifold M. If S cuts M into two handlebodies H and H', we say that S is a Heegaard surface of M, and $H \cup S \cup H'$ is a Heegaard splitting (HS) for M. n is called the genus of the Heegaard splitting.

We use $g(M)$ to denote the Heegaard genus of M, which is the minimal genus of all Heegaard splittings of M.

A Heegaard splitting $H \cup S \cup H'$ for M is minimal if $g(S) = g(M)$.

It is a classical result that any closed connected orientable 3-manifold admits a Heegaard splitting.
1.2 Brief review on Heegaard splittings

Let S be a connected closed orientable surface of genus n in a closed orientable 3-manifold M. If S cuts M into two handlebodies H and H', we say that S is a Heegaard surface of M, and $H \cup S H'$ is a Heegaard splitting (HS) for M. n is called the genus of the Heegaard splitting.

We use $g(M)$ to denote the Heegaard genus of M, which is the minimal genus of all Heegaard splittings of M.

A Heegaard splitting $H \cup_S H'$ for M is minimal if $g(S) = g(M)$.

It is a classical result that any closed connected orientable 3-manifold admits a Heegaard splitting.
1.2 Brief review on Heegaard splittings

Let S be a connected closed orientable surface of genus n in a closed orientable 3-manifold M. If S cuts M into two handlebodies H and H', we say that S is a Heegaard surface of M, and $H \cup S H'$ is a Heegaard splitting (HS) for M. n is called the genus of the Heegaard splitting.

We use $g(M)$ to denote the Heegaard genus of M, which is the minimal genus of all Heegaard splittings of M.

A Heegaard splitting $H \cup S H'$ for M is minimal if $g(S) = g(M)$.

It is a classical result that any closed connected orientable 3-manifold admits a Heegaard splitting.
Let S be a connected closed orientable surface of genus n in a closed orientable 3-manifold M. If S cuts M into two handlebodies H and H', we say that S is a Heegaard surface of M, and $H \cup S H'$ is a Heegaard splitting (HS) for M. n is called the genus of the Heegaard splitting.

We use $g(M)$ to denote the Heegaard genus of M, which is the minimal genus of all Heegaard splittings of M.

A Heegaard splitting $H \cup_S H'$ for M is minimal if $g(S) = g(M)$.

It is a classical result that any closed connected orientable 3-manifold admits a Heegaard splitting.
For a Heegaard splitting $H \cup_S H'$ for M, let $\mathcal{J} = \{J_1, \cdots, J_n\}$ ($\mathcal{J}' = \{J'_1, \cdots, J'_n\}$) be a CSCS for H (H', resp.). We call $(H; \mathcal{J}')$ (or $(H; \mathcal{J}')$, or $(S; \mathcal{J}, \mathcal{J}')$) a Heegaard diagram associated the Heegaard splitting $H \cup_S H'$ of M.

Let $(H; \mathcal{J}')$ be a Heegaard diagram for M. One can obtain M by adding 2-handles along each curve in \mathcal{J}', then capping of the resulting manifold by a 3-ball.

A Heegaard diagram determine a 3-manifold in this way. However, there are many Heegaard diagrams associated to a Heegaard splitting for M.
For a Heegaard splitting $H \cup_S H'$ for M, let $\mathcal{J} = \{J_1, \cdots, J_n\}$ ($\mathcal{J}' = \{J'_1, \cdots, J'_n\}$) be a CSCS for H (H', resp.). We call $(H; \mathcal{J}')$ (or $(H; \mathcal{J}')$, or $(S; \mathcal{J}, \mathcal{J}')$) a Heegaard diagram associated the Heegaard splitting $H \cup_S H'$ of M.

Let $(H; \mathcal{J}')$ be a Heegaard diagram for M. One can obtain M by adding 2-handles along each curve in \mathcal{J}', then capping of the resulting manifold by a 3-ball.

A Heegaard diagram determine a 3-manifold in this way. However, there are many Heegaard diagrams associated to a Heegaard splitting for M.
For a Heegaard splitting $H \cup_S H'$ for M, let $\mathcal{J} = \{J_1, \cdots, J_n\}$ ($\mathcal{J}' = \{J'_1, \cdots, J'_n\}$) be a CSCS for H (H', resp.). We call $(H; \mathcal{J}')$ (or $(H; \mathcal{J}')$, or $(S; \mathcal{J}, \mathcal{J}')$) a **Heegaard diagram** associated the Heegaard splitting $H \cup_S H'$ of M.

Let $(H; \mathcal{J}')$ be a Heegaard diagram for M. One can obtain M by adding 2-handles along each curve in \mathcal{J}', then capping of the resulting manifold by a 3-ball.

A Heegaard diagram determine a 3-manifold in this way. However, there are many Heegaard diagrams associated to a Heegaard splitting for M.

Fengchun Lei (雷逢春) (Joint with Fengling Li and Yan Zhao) 3-submanifolds of S^3 which admits CSS
A Heegaard splitting $H \cup_S H'$ is **stabilized** if \exists essential disks $D \subset H$ and $D' \subset H'$ s.t. $|\partial D \cap \partial D'| = 1$. Otherwise, $H \cup_S H'$ is **unstabilized**.

A stabilized HS $H \cup_S H'$ can be viewed as a connected sum of a HS $V \cup_F V'$ (with genus $g(S) - 1$) and a genus 1 HS of S^3. $H \cup_S H'$ is called an **elementary stabilization** of $V \cup_F V'$. $H \cup_S H'$ is called an **stabilization** of $V \cup_F V'$, if $H \cup_S H'$ can be obtained from $V \cup_F V'$ by a finite number of elementary stabilization.

Waldhausen proved that any Heegaard splitting of positive genus for S^3 is stabilized. That is the uniqueness theorem of the HS for S^3.

Fengchun Lei (雷逢春) (Joint with Fengling Li and Yan Zhao) 3-submanifolds of S^3 which admits CSS
A Heegaard splitting $H \cup_S H'$ is **stabilized** if \exists essential disks $D \subset H$ and $D' \subset H'$ s.t. $|\partial D \cap \partial D'| = 1$. Otherwise, $H \cup_S H'$ is **unstabilized**.

A stabilized HS $H \cup_S H'$ can be viewed as a connected sum of a HS $V \cup_F V'$ (with genus $g(S) - 1$) and a genus 1 HS of S^3. $H \cup_S H'$ is called an **elementary stabilization** of $V \cup_F V'$. $H \cup_S H'$ is called an **stabilization** of $V \cup_F V'$, if $H \cup_S H'$ can be obtained from $V \cup_F V'$ by a finite number of elementary stabilization.

Waldhausen proved that any Heegaard splitting of positive genus for S^3 is stabilized. That is the uniqueness theorem of the HS for S^3.
A Heegaard splitting $H \cup_S H'$ is **stabilized** if \exists essential disks $D \subset H$ and $D' \subset H'$ s.t. $|\partial D \cap \partial D'| = 1$. Otherwise, $H \cup_S H'$ is **unstabilized**.

A stabilized HS $H \cup_S H'$ can be viewed as a connected sum of a HS $V \cup_F V'$ (with genus $g(S) - 1$) and a genus 1 HS of S^3. $H \cup_S H'$ is called an **elementary stabilization** of $V \cup_F V'$. $H \cup_S H'$ is called an **stabilization** of $V \cup_F V'$, if $H \cup_S H'$ can be obtained from $V \cup_F V'$ by a finite number of elementary stabilization.

Waldhausen proved that any Heegaard splitting of positive genus for S^3 is stabilized. That is the uniqueness theorem of the HS for S^3.

Fengchun Lei (雷逢春) (Joint with Fengling Li and Yan Zhao) 3-submanifolds of S^3 which admits CSS
Uniqueness theorem of the HS for S^3

Theorem (Waldhausen, 1968)

Let $V \cup_S W$ be a Heegaard splitting of genus $n \geq 1$ for S^3. Then $V \cup_S W$ is a stabilization of the Heegaard splitting of genus 0 for S^3, i.e., for each genus, the Heegaard splitting for S^3 is unique.

As a direct consequence, we have

Corollary

Let $V \cup_S W$ be a Heegaard splitting of genus $n \geq 1$ for S^3. Then there exists a Heegaard diagram $(S; \{\alpha_1, \cdots, \alpha_n\}, \{\beta_1, \cdots, \beta_n\})$ for S^3 associated to the splitting such that $|\alpha_i \cap \beta_i| = 1$ for $1 \leq i \leq n$, and $|\alpha_i \cap \beta_j| = 0$ for $1 \leq i \neq j \leq n$.

Fengchun Lei (雷逢春) (Joint with Fengling Li and Yan Zhao) 3-submanifolds of S^3 which admits CSS
Uniqueness theorem of the HS for S^3

Theorem (Waldhausen, 1968)

Let $V \cup S W$ be a Heegaard splitting of genus $n \geq 1$ for S^3. Then $V \cup S W$ is a stabilization of the Heegaard splitting of genus 0 for S^3, i.e., for each genus, the Heegaard splitting for S^3 is unique.

As a direct consequence, we have

Corollary

Let $V \cup S W$ be a Heegaard splitting of genus $n \geq 1$ for S^3. Then there exists a Heegaard diagram $(S; \{\alpha_1, \cdots, \alpha_n\}, \{\beta_1, \cdots, \beta_n\})$ for S^3 associated to the splitting such that $|\alpha_i \cap \beta_i| = 1$ for $1 \leq i \leq n$, and $|\alpha_i \cap \beta_j| = 0$ for $1 \leq i \neq j \leq n$.

Fengchun Lei (雷逢春) (Joint with Fengling Li and Yan Zhao)

3-submanifolds of S^3 which admits CSS
We call the Heegaard diagram \((S; \{\alpha_1, \cdots, \alpha_n\}, \{\beta_1, \cdots, \beta_n\})\) for \(S^3\) in the previous Corollary the canonical Heegaard diagram for \(S^3\). See Figure below,

where \(\{\alpha_1, \cdots, \alpha_n\}\) bound a complete disk system in one handlebody \(V\), and \(\{\beta_1, \cdots, \beta_n\}\) bound a complete disk system in another handlebody \(W\).
We call the Heegaard diagram \((S; \{\alpha_1, \cdots, \alpha_n\}, \{\beta_1, \cdots, \beta_n\})\) for \(S^3\) in the previous Corollary the canonical Heegaard diagram for \(S^3\). See Figure below,

where \(\{\alpha_1, \cdots, \alpha_n\}\) bound a complete disk system in one handlebody \(V\), and \(\{\beta_1, \cdots, \beta_n\}\) bound a complete disk system in another handlebody \(W\).
There is a very elegant characterization of the 3-sphere in terms of any corresponding Heegaard diagram.

Theorem

Let $V \cup_F W$ a Heegaard splitting of genus n for a closed orientable 3-manifold M with an associated H-diagram $(V; J_1, \cdots, J_n)$. Then M is homeomorphic to S^3 if and only if there exists an embedding $i : V \hookrightarrow S^3$ such that $K = \{i(J_1), \cdots, i(J_n)\}$ is a CSCS for $W' = S^3 \setminus i(V)$.
Remark:

(1) The theorem was attributed to Moise and some others for the homotopy 3-spheres, and first stated in Haken’s paper. By Perelman’s work on Thurston’s Geometrization Conjecture (which implies Poincaré Conjecture), the homotopy 3-sphere is the 3-sphere.

(2) The embedding $i : V \hookrightarrow S^3$ might be complicated, even for a Heegaard diagram $(V; J)$ associated to the genus 1 Heegaard splitting $V \cup_S W$ of S^3, where $i(J)$ could be any knot in S^3.

(3) The theorem also provides rich examples of 3-manifolds with complete systems of surfaces.
Some Remarks:

Remark:

(1) The theorem was attributed to Moise and some others for the homotopy 3-spheres, and first stated in Haken’s paper. By Perelman’s work on Thurston’s Geometrization Conjecture (which implies Poincaré Conjecture), the homotopy 3-sphere is the 3-sphere.

(2) The embedding \(i : V \hookrightarrow S^3 \) might be complicated, even for a Heegaard diagram \((V; J) \) associated to the genus 1 Heegaard splitting \(V \cup_S W \) of \(S^3 \), where \(i(J) \) could be any knot in \(S^3 \).

(3) The theorem also provides rich examples of 3-manifolds with complete systems of surfaces.
Some Remarks:

Remark:

(1) The theorem was attributed to Moise and some others for the homotopy 3-spheres, and first stated in Haken’s paper. By Perelman’s work on Thurston’s Geometrization Conjecture (which implies Poincaré Conjecture), the homotopy 3-sphere is the 3-sphere.

(2) The embedding \(i : V \hookrightarrow S^3\) might be complicated, even for a Heegaard diagram \((V; J)\) associated to the genus 1 Heegaard splitting \(V \cup_S W\) of \(S^3\), where \(i(J)\) could be any knot in \(S^3\).

(3) The theorem also provides rich examples of 3-manifolds with complete systems of surfaces.
Some Remarks:

Remark:

(1) The theorem was attributed to Moise and some others for the homotopy 3-spheres, and first stated in Haken’s paper. By Perelman’s work on Thurston’s Geometrization Conjecture (which implies Poincaré Conjecture), the homotopy 3-sphere is the 3-sphere.

(2) The embedding $i : V \hookrightarrow S^3$ might be complicated, even for a Heegaard diagram $(V; J)$ associated to the genus 1 Heegaard splitting $V \cup_S W$ of S^3, where $i(J)$ could be any knot in S^3.

(3) The theorem also provides rich examples of 3-manifolds with complete systems of surfaces.
2. 3-submanifolds in S^3 which admit CSCS

The following is a classical re-embedding theorem of Fox for a compact connected 3-submanifold of S^3:

Theorem

Let X be a compact connected 3-submanifold of S^3. Then X can be re-embedded in S^3 so that the complement of the image of X is a union of handlebodies.

In the following, we will always assume that M is a compact 3-submanifold of S^3 with one boundary component F which admits CSCS. We say that there always exists such 3-submanifold in S^3, for example, let M_K be the complement of a non-trivial knot K in S^3, then the preferred longitude for K is a CSCS for M_K on the ∂M_K which can be spanned to a Seifert surface for K.
The following is a classical re-embedding theorem of Fox for a compact connected 3-submanifold of S^3:

Theorem

Let X be a compact connected 3-submanifold of S^3. Then X can be re-embedded in S^3 so that the complement of the image of X is a union of handlebodies.

In the following, we will always assume that M is a compact 3-submanifold of S^3 with one boundary component F which admits CSCS. We say that there always exists such 3-submanifold in S^3, for example, let M_K be the complement of a non-trivial knot K in S^3, then the preferred longitude for K is a CSCS for M_K on the ∂M_K which can be spanned to a Seifert surface for K.

Fengchun Lei (雷逢春) (Joint with Fengling Li and Yan Zhao)
By Fox’s re-embedding theorem, the previous characterization of the 3-sphere in term of HS can be stated in a strong version as follows.

Theorem

Let $V \cup_F W$ a Heegaard splitting of genus n for a closed orientable 3-manifold M with an associated H-diagram $(V; J_1, \cdots, J_n)$. Then M is homeomorphic to S^3 if and only if there exists an embedding $i: V \hookrightarrow S^3$ such that $K = \{i(J_1), \cdots, i(J_n)\}$ is a CSCS for $W' = S^3 \setminus i(V)$, and the manifold obtained by cutting open W' along a CSS in W' spanned by K is a handlebody.

We call the 3-manifold W' in the above theorem a quasi-handlebody.

Question: Classify quasi-handlebodies.
A characterization of the 3-sphere: a strong version

By Fox’s re-embedding theorem, the previous characterization of the 3-sphere in term of HS can be stated in a strong version as follows.

Theorem

Let $V \cup F W$ a Heegaard splitting of genus n for a closed orientable 3-manifold M with an associated H-diagram $(V; J_1, \cdots, J_n)$. Then M is homeomorphic to S^3 if and only if there exists an embedding $i : V \hookrightarrow S^3$ such that $K = \{i(J_1), \cdots, i(J_n)\}$ is a CSCS for $W' = S^3 \setminus i(V)$, and the manifold obtained by cutting open W' along a CSS in W' spanned by K is a handlebody.

We call the 3-manifold W' in the above theorem a quasi-handlebody.

Question: Classify quasi-handlebodies.

Fengchun Lei (雷逢春) (Joint with Fengling Li and Yan Zhao)
By Fox’s re-embedding theorem, the previous characterization of
the 3-sphere in term of HS can be stated in a strong version as
follows.

Theorem

Let $V \cup F W$ a Heegaard splitting of genus n for a closed orientable
3-manifold M with an associated H-diagram $(V; J_1, \cdots, J_n)$. Then
M is homeomorphic to S^3 if and only if there exists an embedding
$i : V \hookrightarrow S^3$ such that $K = \{i(J_1), \cdots, i(J_n)\}$ is a CSCS for
$W' = S^3 \setminus i(V)$, and the manifold obtained by cutting open W'
along a CSS in W' spanned by K is a handlebody.

We call the 3-manifold W' in the above theorem a
quasi-handlebody.

Question: Classify quasi-handlebodies.
The following theorem shows that the equivalent classes of CSCS for such 3-submanifolds of S^3 are unique.

Theorem (Zhao-Lei-Li)

Let \mathcal{J}, \mathcal{K} be two CSCS for M. Then \mathcal{J} and \mathcal{K} are equivalent.

A natural question: Is there a 3-manifold M which admits two non-equivalent CSCS?

Theorem (Zhao-Lei)

Suppose that M is a 3-submanifold of S^3 which admits a CSCS \mathcal{J}. Assume that ∂M is compressible in M. Let \mathcal{D} be a maximal collection of pairwise disjoint compression disks for ∂M in M. Then there exists CSCS \mathcal{J}' for M (which is equivalent to \mathcal{J}) such that \mathcal{J}' is disjoint from $\partial \mathcal{D}$.
The following theorem shows that the equivalent classes of CSCS for such 3-submanifolds of S^3 are unique.

Theorem (Zhao-Lei-Li)

Let \mathcal{J}, \mathcal{K} be two CSCS for M. Then \mathcal{J} and \mathcal{K} are equivalent.

A natural question: Is there a 3-manifold M which admits two non-equivalent CSCS?

Theorem (Zhao-Lei)

Suppose that M is a 3-submanifold of S^3 which admits a CSCS \mathcal{J}. Assume that ∂M is compressible in M. Let \mathcal{D} be a maximal collection of pairwise disjoint compression disks for ∂M in M. Then there exists CSCS \mathcal{J}' for M (which is equivalent to \mathcal{J}) such that \mathcal{J}' is disjoint from $\partial \mathcal{D}$.

Fengchun Lei (雷逢春) (Joint with Fengling Li and Yan Zhao)
3-submanifolds in S^3 which admit CSCS

The following theorem shows that the equivalent classes of CSCS for such 3-submanifolds of S^3 are unique.

Theorem (Zhao-Lei-Li)

Let \mathcal{J}, \mathcal{K} be two CSCS for M. Then \mathcal{J} and \mathcal{K} are equivalent.

A natural question: Is there a 3-manifold M which admits two non-equivalent CSCS?

Theorem (Zhao-Lei)

Suppose that M is a 3-submanifold of S^3 which admits a CSCS \mathcal{J}. Assume that ∂M is compressible in M. Let \mathcal{D} be a maximal collection of pairwise disjoint compression disks for ∂M in M. Then there exists CSCS \mathcal{J}' for M (which is equivalent to \mathcal{J}) such that \mathcal{J}' is disjoint from $\partial \mathcal{D}$.
Theorem (Zhao-Lei-Li)

Suppose that M is a 3-submanifold of S^3 which admits a CSCS \mathcal{J}, and the complement $H = S^3 \setminus M$ is a handlebody. Then there exists a CSCS $\{\alpha_1, \cdots, \alpha_n\}$ for M on ∂M which is equivalent to \mathcal{J} and a CSCS $\{\beta_1, \cdots, \beta_n\}$ for H (which bounds a complete disk system for H) such that $|\alpha_i \cap \beta_i| = 1$ for $1 \leq i \leq n$, and $|\alpha_i \cap \beta_j| = 0$ for $1 \leq i \neq j \leq n$.

Corollary

Suppose that M is a 3-submanifold of S^3 which admits a CSCS \mathcal{J}, and the complement $H = S^3 \setminus M$ is a handlebody. Then there exists a CSCS $\{\alpha_1, \cdots, \alpha_n\}$ for M on ∂M and a collection \mathcal{D} of $n - 1$ pairwise disjoint disks which cuts H into n solid tori T_1, \cdots, T_n, such that α_i is a preferred longitude of T_i, $1 \leq i \leq n$.

Fengchun Lei (雷逢春) (Joint with Fengling Li and Yan Zhao)
Theorem (Zhao-Lei-Li)

Suppose that M is a 3-submanifold of S^3 which admits a CSCS \mathcal{J}, and the complement $H = S^3 \setminus M$ is a handlebody. Then there exists a CSCS $\{\alpha_1, \cdots, \alpha_n\}$ for M on ∂M which is equivalent to \mathcal{J} and a CSCS $\{\beta_1, \cdots, \beta_n\}$ for H (which bounds a complete disk system for H) such that $|\alpha_i \cap \beta_i| = 1$ for $1 \leq i \leq n$, and $|\alpha_i \cap \beta_j| = 0$ for $1 \leq i \neq j \leq n$.

Corollary

Suppose that M is a 3-submanifold of S^3 which admits a CSCS \mathcal{J}, and the complement $H = S^3 \setminus M$ is a handlebody. Then there exists a CSCS $\{\alpha_1, \cdots, \alpha_n\}$ for M on ∂M and a collection \mathcal{D} of $n-1$ pairwise disjoint disks which cuts H into n solid tori T_1, \cdots, T_n, such that α_i is a preferred longitude of T_i, $1 \leq i \leq n$.
This is just the picture we have seen in the boundary link case, therefore the theorem gives a positive answer to the question mentioned earlier up to equivalence.
In general, we have

Theorem (Zhao-Lei-Li)

Let F be a closed surface of genus $n \geq 1$ in S^3 which splits S^3 into two 3-manifolds M_1 and M_2, each admits a CSCS. Then there exists a CSCS $\{\alpha_1, \cdots, \alpha_n\}$ for M_1 and a CSCS $\{\beta_1, \cdots, \beta_n\}$ for M_2, such that $|\alpha_i \cap \beta_i| = 1$ for $1 \leq i \leq n$, and $|\alpha_i \cap \beta_j| = 0$ for $1 \leq i \neq j \leq n$.

Remark: The proofs of these theorems are essentially dependent on the uniqueness theorem for Heegaard splittings of S^3. It is clear that the above theorem implies Poincaré Conjecture. Thus, it is equivalent to Poincaré Conjecture.
3-submanifolds in S^3 which admit CSCS

In general, we have

Theorem (Zhao-Lei-Li)

Let F be a closed surface of genus $n \geq 1$ in S^3 which splits S^3 into two 3-manifolds M_1 and M_2, each admits a CSCS. Then there exists a CSCS $\{\alpha_1, \ldots, \alpha_n\}$ for M_1 and a CSCS $\{\beta_1, \ldots, \beta_n\}$ for M_2, such that $|\alpha_i \cap \beta_i| = 1$ for $1 \leq i \leq n$, and $|\alpha_i \cap \beta_j| = 0$ for $1 \leq i \neq j \leq n$.

Remark: The proofs of these theorems are essentially dependent on the uniqueness theorem for Heegaard splittings of S^3. It is clear that the above theorem implies Poincaré Conjecture. Thus, it is equivalent to Poincaré Conjecture.
THANKS FOR YOUR ATTENTION!