3-submanifolds of S^3 which admit complete surface systems (CSS)

Fengchun Lei (雷逢春) (Joint with Fengling Li and Yan Zhao)

School of Mathematical Sciences Dalian University of Technology, Dalian, China

fclei@dlut.edu.cn

The 6th China-Russia Conference on Knot Theory and Related Topics

Novosibirsk, Russia, June 17-21, 2019

・ 同 ト ・ ヨ ト ・ ヨ ト

- Background and Preliminaries
 - Some Definitions and fundamental facts on CCS and CSS
 - Ø Brief review on Heegaard splttings
- **2** 3-submanifolds in S^3 which admitting CSCS

1. Background and Preliminaries

1.1 Some Definitions and fundamental facts on CCS and CSS

Def: Let $F = F_n$ be a closed connected orientable surface of genus $n \ge 1$. A complete curve system (CCS, for simplicity) on F is a collection $\mathcal{J} = \{J_1, \dots, J_n\}$ of n pairwise disjoint simple closed curves on F such that the surface obtained by cutting F open along \mathcal{J} is a 2*n*-punctured sphere.

On the surface F genus 2 as above, $\{\alpha_1, \alpha_2\}$, $\{\alpha_1, \beta_2\}$, $\{\beta_1, \alpha_2\}$, $\{\beta_1, \beta_2\}$, $\{\alpha_1, \gamma_1\}$, and $\{\alpha_2, \gamma_1\}$ are examples of CCS for F.

Def: Let $\mathcal{J} = \{J_1, \dots, J_n\}$ be a CCS on F. For $1 \leq i \neq j \leq n$, let γ be a simple arc on S such that $\gamma \cap J_i$ is an end point of γ , $\gamma \cap J_j$ is another end point of γ , and the interior of γ is disjoint from $\bigcup_{1 \leq i \leq n} J_i$. Let $P = N(J_i \cup \gamma \cup J_j)$ be a small compact regular neighborhood of $J_i \cup \gamma \cup J_j$ on S. Denote by $J_{ij} = J_i \#_{\gamma} J_j$ the boundary component of P which is not isotopic to J_i or J_j on P, and call it the band sum of J_i and J_j along γ . We may assume that J_{ij} is disjoint from the curves in \mathcal{J} . Replace J_i or J_j by J_{ij} in \mathcal{J} to get a new CCS \mathcal{J}' on S. We call \mathcal{J}' a band sum move of \mathcal{J} .

Band sum move

It is clear that if \mathcal{J}' is a band sum move of \mathcal{J} , then \mathcal{J} is also a band sum move of \mathcal{J}' .

Def: Two CCS C_1 and C_2 on a closed surface S of genus n > 0 are called equivalent if one can be obtained from another by a finite number of band sum moves and isotopies.

Band sum move

It is clear that if \mathcal{J}' is a band sum move of \mathcal{J} , then \mathcal{J} is also a band sum move of \mathcal{J}' .

Def: Two CCS C_1 and C_2 on a closed surface *S* of genus n > 0 are called equivalent if one can be obtained from another by a finite number of band sum moves and isotopies.

Def: Let *M* be a compact 3-manifold with a single boundary component *F* of genus $g(F) = n \ge 1$. Let $\mathcal{J} = \{J_1, \dots, J_n\}$ be a CCS on *F*. If there exists a collection of pairwise disjoint compact connected orientable surfaces S_1, \dots, S_n properly embedded in *M* such that $\partial S_i = J_i$ for each $1 \le i \le n$, we call $\mathcal{S} = \{S_1, \dots, S_n\}$ a complete surface system (CSS) in *M*, and call \mathcal{J} a complete spanning curve system (CSCS) for *M* on *F*. Sometimes we say that *M* admits a CSS or CSCS. **Example 1:** A handlebody H of genus n is a 3-manifold which admits a complete disk system $\mathcal{D} = \{D_1, \dots, D_n\}$ such that the manifold obtained by cutting H open along \mathcal{D} is a 3-ball.

Clearly, \mathcal{D} is a CSS for handlebody H, usually called a complete disk system for H, and $\partial \mathcal{D} = \{\partial D_1, \cdots, \partial D_n\}$ is a CSCS for H.

Example 1: A handlebody H of genus n is a 3-manifold which admits a complete disk system $\mathcal{D} = \{D_1, \dots, D_n\}$ such that the manifold obtained by cutting H open along \mathcal{D} is a 3-ball.

Clearly, \mathcal{D} is a CSS for handlebody H, usually called a complete disk system for H, and $\partial \mathcal{D} = \{\partial D_1, \cdots, \partial D_n\}$ is a CSCS for H.

Example 2: Let K be a knot in S^3 , N(K) a regular neighbourhood of K in S^3 , and $M_K = \overline{M \setminus N(K)}$ the complement of K. Let S' be a Seifert surface of K in S^3 with $S' \cap N(K)$ an annulus. Let $S = S' \cap M_K$, and $J = \partial S$. Then J is a CSCS for M_K , and S is a CSS for M_K .

Example 3: Let $L = \{l_1, \dots, l_n\}$ be a boundary link in S^3 . L bounds a disjoint union of n Seifert surfaces $S_1 \dots, S_n$ in S^3 such that l_i bounds S_i for $i = 1, \dots, n$. Choose a point P in S^3 so that P is not contained in any S_i , $1 \le i \le n$. For each i, $1 \le i \le n$, choose a simple arc α_i in S^3 connecting P and a point $P_i \in l_i$, such that $\alpha_i \cap S_i = \alpha_i \cap l_i = P_i$, and for $i \ne j$, $\alpha_i \cap \alpha_j = \{P\}$. Set $\Gamma = \bigcup_{i=1}^n \alpha_i \cup l_i$. Then Γ is a connected graph with $\chi(\Gamma) = -n$. Let H be a regular neighborhood of Γ in S^3 . H is a handlebody of genus n. Clearly, $M = \overline{S^3 \setminus H}$ admits a CSCS on ∂M .

Example 2: Let K be a knot in S^3 , N(K) a regular neighbourhood of K in S^3 , and $M_K = \overline{M \setminus N(K)}$ the complement of K. Let S' be a Seifert surface of K in S^3 with $S' \cap N(K)$ an annulus. Let $S = S' \cap M_K$, and $J = \partial S$. Then J is a CSCS for M_K , and S is a CSS for M_K .

Example 3: Let $L = \{l_1, \dots, l_n\}$ be a boundary link in S^3 . L bounds a disjoint union of n Seifert surfaces $S_1 \dots, S_n$ in S^3 such that l_i bounds S_i for $i = 1, \dots, n$. Choose a point P in S^3 so that P is not contained in any S_i , $1 \le i \le n$. For each i, $1 \le i \le n$, choose a simple arc α_i in S^3 connecting P and a point $P_i \in l_i$, such that $\alpha_i \cap S_i = \alpha_i \cap l_i = P_i$, and for $i \ne j$, $\alpha_i \cap \alpha_j = \{P\}$. Set $\Gamma = \bigcup_{i=1}^n \alpha_i \cup l_i$. Then Γ is a connected graph with $\chi(\Gamma) = -n$. Let H be a regular neighborhood of Γ in S^3 . H is a handlebody of genus n. Clearly, $M = \overline{S^3 \setminus H}$ admits a CSCS on ∂M .

Boundary link

Question: For a 3-submanifold M in S^3 which admits a CSS, can M be obtained from a boundary link in a way as above?

Def: Let $S = \{S_1, \dots, S_n\}$, $S' = \{S'_1, \dots, S'_n\}$ be two CSS for 3-manifold M, and \mathcal{J} , \mathcal{J}' , the corresponding CSCSs on $F = \partial M$. We say that S and S' are equivalent if \mathcal{J} and \mathcal{J}' are equivalent on F.

Remark:

1. The equivalence of CSS for *M* only depends on the equivalence of their corresponding boundaries.

2. For a CSCS \mathcal{J} for a 3-manifold M, the spanned surfaces of \mathcal{J} in M may not unique. For example, the knot complements. We emphasize the existence of a CSS, not the individual of the CSS. That's the reason why we use CSCS to denote CSS.

Def: Let $S = \{S_1, \dots, S_n\}$, $S' = \{S'_1, \dots, S'_n\}$ be two CSS for 3-manifold M, and \mathcal{J} , \mathcal{J}' , the corresponding CSCSs on $F = \partial M$. We say that S and S' are equivalent if \mathcal{J} and \mathcal{J}' are equivalent on F.

Remark:

1. The equivalence of CSS for M only depends on the equivalence of their corresponding boundaries.

2. For a CSCS \mathcal{J} for a 3-manifold M, the spanned surfaces of \mathcal{J} in M may not unique. For example, the knot complements. We emphasize the existence of a CSS, not the individual of the CSS. That's the reason why we use CSCS to denote CSS.

Def: Let $S = \{S_1, \dots, S_n\}$, $S' = \{S'_1, \dots, S'_n\}$ be two CSS for 3-manifold M, and \mathcal{J} , \mathcal{J}' , the corresponding CSCSs on $F = \partial M$. We say that S and S' are equivalent if \mathcal{J} and \mathcal{J}' are equivalent on F.

Remark:

1. The equivalence of CSS for M only depends on the equivalence of their corresponding boundaries.

2. For a CSCS \mathcal{J} for a 3-manifold M, the spanned surfaces of \mathcal{J} in M may not unique. For example, the knot complements. We emphasize the existence of a CSS, not the individual of the CSS. That's the reason why we use CSCS to denote CSS.

Proposition

Let *H* be a handlebody of genus $n \ge 1$.

(1) The only complete surface system in *H* is the complete disk system.

(2) Let $\mathcal{D} = \{D_1, \dots, D_n\}$ be a complete disk system for H, and $\mathcal{J} = \partial \mathcal{D} = \{\partial D_1, \dots, \partial D_n\}$. Then any CCS \mathcal{K} on ∂H which is equivalent to \mathcal{J} is also a CSS for H, therefore the boundary of a complete disk system for H.

(3) Any two complete disk systems for H are equivalent. Thus, the complete disk systems for H are unique up to the equivalence.

(4月) (1日) (日)

Proposition

Let *H* be a handlebody of genus $n \ge 1$.

(1) The only complete surface system in H is the complete disk system.

(2) Let $\mathcal{D} = \{D_1, \dots, D_n\}$ be a complete disk system for H, and $\mathcal{J} = \partial \mathcal{D} = \{\partial D_1, \dots, \partial D_n\}$. Then any CCS \mathcal{K} on ∂H which is equivalent to \mathcal{J} is also a CSS for H, therefore the boundary of a complete disk system for H.

(3) Any two complete disk systems for H are equivalent. Thus, the complete disk systems for H are unique up to the equivalence.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition

Let *H* be a handlebody of genus $n \ge 1$.

(1) The only complete surface system in H is the complete disk system.

(2) Let $\mathcal{D} = \{D_1, \dots, D_n\}$ be a complete disk system for H, and $\mathcal{J} = \partial \mathcal{D} = \{\partial D_1, \dots, \partial D_n\}$. Then any CCS \mathcal{K} on ∂H which is equivalent to \mathcal{J} is also a CSS for H, therefore the boundary of a complete disk system for H.

(3) Any two complete disk systems for H are equivalent. Thus, the complete disk systems for H are unique up to the equivalence.

< 同 > < E > < E >

Proposition

Let *H* be a handlebody of genus $n \ge 1$.

(1) The only complete surface system in H is the complete disk system.

(2) Let $\mathcal{D} = \{D_1, \dots, D_n\}$ be a complete disk system for H, and $\mathcal{J} = \partial \mathcal{D} = \{\partial D_1, \dots, \partial D_n\}$. Then any CCS \mathcal{K} on ∂H which is equivalent to \mathcal{J} is also a CSS for H, therefore the boundary of a complete disk system for H.

(3) Any two complete disk systems for H are equivalent. Thus, the complete disk systems for H are unique up to the equivalence.

Fundamental properties

Def: Let $F = F_n$ be a closed connected orientable surface of genus $n \ge 1$. A general complete curve system (GCCS) on F is a collection $\mathcal{J} = \{J_1, \dots, J_k\}$ of k pairwise disjoint simple closed curves on F which contains a CCS as a subset.

The previous proposition can be generalized directly as follows:

Proposition

Let M be a compact 3-manifold with a single boundary component F of genus $g(F) = n \ge 1$. Let $\mathcal{K} \subset F$ be a CSCS for M. Then any CCS \mathcal{J} on F which is equivalent to \mathcal{K} is also a CSCS for M. Moreover, for any GCCS $\mathcal{J}' = \{J_1, \cdots, J_k\}$ on F which contains \mathcal{J} as a subset, there exists a collection of pairwise disjoint compact orientable surfaces S_1, \cdots, S_k properly embedded in M, such that $\partial S_i = J_i$ for each $1 \le i \le k$. **Def:** Let $F = F_n$ be a closed connected orientable surface of genus $n \ge 1$. A general complete curve system (GCCS) on F is a collection $\mathcal{J} = \{J_1, \dots, J_k\}$ of k pairwise disjoint simple closed curves on F which contains a CCS as a subset.

The previous proposition can be generalized directly as follows:

Proposition

Let M be a compact 3-manifold with a single boundary component F of genus $g(F) = n \ge 1$. Let $\mathcal{K} \subset F$ be a CSCS for M. Then any CCS \mathcal{J} on F which is equivalent to \mathcal{K} is also a CSCS for M. Moreover, for any GCCS $\mathcal{J}' = \{J_1, \cdots, J_k\}$ on F which contains \mathcal{J} as a subset, there exists a collection of pairwise disjoint compact orientable surfaces S_1, \cdots, S_k properly embedded in M, such that $\partial S_i = J_i$ for each $1 \le i \le k$.

We use g(M) to denote the Heegaard genus of M, which is the minimal genus of all Heegaard splittings of M.

A Heegaard splitting $H \cup_S H'$ for M is minimal if g(S) = g(M).

It is a classical result that any closed connected orientable 3-manifold admits a Heegaard splitting.

We use g(M) to denote the Heegaard genus of M, which is the minimal genus of all Heegaard splittings of M.

A Heegaard splitting $H \cup_S H'$ for M is minimal if g(S) = g(M).

It is a classical result that any closed connected orientable 3-manifold admits a Heegaard splitting.

We use g(M) to denote the Heegaard genus of M, which is the minimal genus of all Heegaard splittings of M.

A Heegaard splitting $H \cup_S H'$ for M is minimal if g(S) = g(M).

It is a classical result that any closed connected orientable 3-manifold admits a Heegaard splitting.

We use g(M) to denote the Heegaard genus of M, which is the minimal genus of all Heegaard splittings of M.

A Heegaard splitting $H \cup_S H'$ for M is minimal if g(S) = g(M).

It is a classical result that any closed connected orientable 3-manifold admits a Heegaard splitting.

For a Heegaard splitting $H \cup_S H'$ for M, let $\mathcal{J} = \{J_1, \dots, J_n\}$ $(\mathcal{J}' = \{J'_1, \dots, J'_n\})$ be a CSCS for H (H', resp.). We call ($H; \mathcal{J}'$) (or ($H; \mathcal{J}'$), or ($S; \mathcal{J}, \mathcal{J}'$)) a Heegaard diagram associated the Heegaard splitting $H \cup_S H'$ of M.

Let $(H; \mathcal{J}')$ be a Heegaard diagram for M. One can obtain M by adding 2-handles along each curve in \mathcal{J}' , then capping of the resulting manifold by a 3-ball.

A Heegaard diagram determine a 3-manifold in this way. However, There are many Heegaard diagrams associated to a Heegaard splitting for *M*. For a Heegaard splitting $H \cup_S H'$ for M, let $\mathcal{J} = \{J_1, \dots, J_n\}$ $(\mathcal{J}' = \{J'_1, \dots, J'_n\})$ be a CSCS for H (H', resp.). We call ($H; \mathcal{J}'$) (or ($H; \mathcal{J}'$), or ($S; \mathcal{J}, \mathcal{J}'$)) a Heegaard diagram associated the Heegaard splitting $H \cup_S H'$ of M.

Let $(H; \mathcal{J}')$ be a Heegaard diagram for M. One can obtain M by adding 2-handles along each curve in \mathcal{J}' , then capping of the resulting manifold by a 3-ball.

A Heegaard diagram determine a 3-manifold in this way. However, There are many Heegaard diagrams associated to a Heegaard splitting for *M*. For a Heegaard splitting $H \cup_S H'$ for M, let $\mathcal{J} = \{J_1, \dots, J_n\}$ $(\mathcal{J}' = \{J'_1, \dots, J'_n\})$ be a CSCS for H (H', resp.). We call ($H; \mathcal{J}'$) (or ($H; \mathcal{J}'$), or ($S; \mathcal{J}, \mathcal{J}'$)) a Heegaard diagram associated the Heegaard splitting $H \cup_S H'$ of M.

Let $(H; \mathcal{J}')$ be a Heegaard diagram for M. One can obtain M by adding 2-handles along each curve in \mathcal{J}' , then capping of the resulting manifold by a 3-ball.

A Heegaard diagram determine a 3-manifold in this way. However, There are many Heegaard diagrams associated to a Heegaard splitting for M.

A Heegaard splitting $H \cup_S H'$ is stabilized if \exists essential disks $D \subset H$ and $D' \subset H'$ s.t. $|\partial D \cap \partial D'| = 1$. Otherwise, $H \cup_S H'$ is unstabilized.

A stabilized HS $H \cup_S H'$ can be viewed as a connected sum of a HS $V \cup_F V'$ (with genus g(S) - 1) and a genus 1 HS of S^3 . $H \cup_S H'$ is called an elementary stabilization of $V \cup_F V'$. $H \cup_S H'$ is called an stabilization of $V \cup_F V'$, if $H \cup_S H'$ can be obtained from $V \cup_F V'$ by a finite number of elementary stabilization.

Waldhausen proved that any Heegaard splitting of positive genus for S^3 is stabilized. That is the uniqueness theorem of the HS for S^3 .

A Heegaard splitting $H \cup_S H'$ is stabilized if \exists essential disks $D \subset H$ and $D' \subset H'$ s.t. $|\partial D \cap \partial D'| = 1$. Otherwise, $H \cup_S H'$ is unstabilized.

A stabilized HS $H \cup_S H'$ can be viewed as a connected sum of a HS $V \cup_F V'$ (with genus g(S) - 1) and a genus 1 HS of S^3 . $H \cup_S H'$ is called an elementary stabilization of $V \cup_F V'$. $H \cup_S H'$ is called an stabilization of $V \cup_F V'$, if $H \cup_S H'$ can be obtained from $V \cup_F V'$ by a finite number of elementary stabilization.

Waldhausen proved that any Heegaard splitting of positive genus for S^3 is stabilized. That is the uniqueness theorem of the HS for S^3 .

A Heegaard splitting $H \cup_S H'$ is stabilized if \exists essential disks $D \subset H$ and $D' \subset H'$ s.t. $|\partial D \cap \partial D'| = 1$. Otherwise, $H \cup_S H'$ is unstabilized.

A stabilized HS $H \cup_S H'$ can be viewed as a connected sum of a HS $V \cup_F V'$ (with genus g(S) - 1) and a genus 1 HS of S^3 . $H \cup_S H'$ is called an elementary stabilization of $V \cup_F V'$. $H \cup_S H'$ is called an stabilization of $V \cup_F V'$, if $H \cup_S H'$ can be obtained from $V \cup_F V'$ by a finite number of elementary stabilization.

Waldhausen proved that any Heegaard splitting of positive genus for S^3 is stabilized. That is the uniqueness theorem of the HS for S^3 .

Theorem (Waldhausen, 1968)

Let $V \cup_S W$ be a Heegaard splitting of genus $n \ge 1$ for S^3 . Then $V \cup_S W$ is a stabilization of the Heegaard splitting of genus 0 for S^3 , i.e., for each genus, the Heegaard splitting for S^3 is unique.

As a direct consequence, we have

Corollary

Let $V \cup_S W$ be a Heegaard splitting of genus $n \ge 1$ for S^3 . Then there exists a Heegaard diagram $(S; \{\alpha_1, \dots, \alpha_n\}, \{\beta_1, \dots, \beta_n\})$ for S^3 associated to the splitting such that $|\alpha_i \cap \beta_i| = 1$ for $1 \le i \le n$, and $|\alpha_i \cap \beta_j| = 0$ for $1 \le i \ne j \le n$.

Theorem (Waldhausen, 1968)

Let $V \cup_S W$ be a Heegaard splitting of genus $n \ge 1$ for S^3 . Then $V \cup_S W$ is a stabilization of the Heegaard splitting of genus 0 for S^3 , i.e., for each genus, the Heegaard splitting for S^3 is unique.

As a direct consequence, we have

Corollary

Let $V \cup_S W$ be a Heegaard splitting of genus $n \ge 1$ for S^3 . Then there exists a Heegaard diagram $(S; \{\alpha_1, \dots, \alpha_n\}, \{\beta_1, \dots, \beta_n\})$ for S^3 associated to the splitting such that $|\alpha_i \cap \beta_i| = 1$ for $1 \le i \le n$, and $|\alpha_i \cap \beta_j| = 0$ for $1 \le i \ne j \le n$.

Canonical Heegaard diagram for S^3

We call the Heegaard diagram $(S; \{\alpha_1, \dots, \alpha_n\}, \{\beta_1, \dots, \beta_n\})$ for S^3 in the previous Corollary the canonical Heegaard diagram for S^3 . See Figure below,

where $\{\alpha_1, \dots, \alpha_n\}$ bound a complete disk system in one handlebody V, and $\{\beta_1, \dots, \beta_n\}$ bound a complete disk system in another handlebody W.

Canonical Heegaard diagram for S^3

We call the Heegaard diagram $(S; \{\alpha_1, \dots, \alpha_n\}, \{\beta_1, \dots, \beta_n\})$ for S^3 in the previous Corollary the canonical Heegaard diagram for S^3 . See Figure below,

where $\{\alpha_1, \dots, \alpha_n\}$ bound a complete disk system in one handlebody V, and $\{\beta_1, \dots, \beta_n\}$ bound a complete disk system in another handlebody W.

There is a very elegant characterization of the 3-sphere in terms of any corresponding Heegaard diagram.

Theorem

Let $V \cup_F W$ a Heegaard splitting of genus *n* for a closed orientable 3-manifold *M* with an associated H-diagram $(V; J_1, \dots, J_n)$. Then *M* is homeomorphic to S^3 if and only if there exists an embedding $i: V \hookrightarrow S^3$ such that $K = \{i(J_1), \dots, i(J_n)\}$ is a CSCS for $W' = \overline{S^3 \setminus i(V)}$.

(1) The theorem was attributed to Moise and some others for the homotopy 3-spheres, and first stated in Haken's paper. By Perelman's work on Thurston's Geometrization Conjecture (which implies Poincaré Conjecture), the homotopy 3-sphere is the 3-sphere.

(2) The embedding $i: V \hookrightarrow S^3$ might be complicated, even for a Heegaard diagram (V; J) associated to the genus 1 Heegaard splitting $V \cup_S W$ of S^3 , where i(J) could be any knot in S^3 .

(1) The theorem was attributed to Moise and some others for the homotopy 3-spheres, and first stated in Haken's paper. By Perelman's work on Thurston's Geometrization Conjecture (which implies Poincaré Conjecture), the homotopy 3-sphere is the 3-sphere.

(2) The embedding $i : V \hookrightarrow S^3$ might be complicated, even for a Heegaard diagram (V; J) associated to the genus 1 Heegaard splitting $V \cup_S W$ of S^3 , where i(J) could be any knot in S^3 .

(1) The theorem was attributed to Moise and some others for the homotopy 3-spheres, and first stated in Haken's paper. By Perelman's work on Thurston's Geometrization Conjecture (which implies Poincaré Conjecture), the homotopy 3-sphere is the 3-sphere.

(2) The embedding $i: V \hookrightarrow S^3$ might be complicated, even for a Heegaard diagram (V; J) associated to the genus 1 Heegaard splitting $V \cup_S W$ of S^3 , where i(J) could be any knot in S^3 .

(1) The theorem was attributed to Moise and some others for the homotopy 3-spheres, and first stated in Haken's paper. By Perelman's work on Thurston's Geometrization Conjecture (which implies Poincaré Conjecture), the homotopy 3-sphere is the 3-sphere.

(2) The embedding $i: V \hookrightarrow S^3$ might be complicated, even for a Heegaard diagram (V; J) associated to the genus 1 Heegaard splitting $V \cup_S W$ of S^3 , where i(J) could be any knot in S^3 .

2. 3-submanifolds in S^3 which admit CSCS

The following is a classical re-embedding theorem of Fox for a compact connected 3-submanifold of S^3 :

Theorem

Let X be a compact connected 3-submanifold of S^3 . Then X can be re-embedded in S^3 so that the complement of the image of X is a union of handlebodies.

In the following, we will always assume that M is a compact 3-submanifold of S^3 with one boundary component F which admits CSCS. We say that there always exists such 3-submanifold in S^3 , for example, let M_K be the complement of a non-trivial knot K in S^3 , then the preferred longitude for K is a CSCS for M_K on the ∂M_K which can be spanned to a Seifert surface for K.

2. 3-submanifolds in S^3 which admit CSCS

The following is a classical re-embedding theorem of Fox for a compact connected 3-submanifold of S^3 :

Theorem

Let X be a compact connected 3-submanifold of S^3 . Then X can be re-embedded in S^3 so that the complement of the image of X is a union of handlebodies.

In the following, we will always assume that M is a compact 3-submanifold of S^3 with one boundary component F which admits CSCS. We say that there always exists such 3-submanifold in S^3 , for example, let M_K be the complement of a non-trivial knot K in S^3 , then the preferred longitude for K is a CSCS for M_K on the ∂M_K which can be spanned to a Seifert surface for K.

A characterization of the 3-sphere: a strong version

By Fox's re-embedding theorem, the previous characterization of the 3-sphere in term of HS can be stated in a strong version as follows.

Theorem

Let $V \cup_F W$ a Heegaard splitting of genus *n* for a closed orientable 3-manifold *M* with an associated H-diagram $(V; J_1, \dots, J_n)$. Then *M* is homeomorphic to S^3 if and only if there exists an embedding $i: V \hookrightarrow S^3$ such that $K = \{i(J_1), \dots, i(J_n)\}$ is a CSCS for $W' = \overline{S^3 \setminus i(V)}$, and the manifold obtained by cutting open W'along a CSS in W' spanned by *K* is a handlebody.

We call the 3-manifold W' in the above theorem a quasi-handlebody.

Question: Classify quasi-handlebodies.

A characterization of the 3-sphere: a strong version

By Fox's re-embedding theorem, the previous characterization of the 3-sphere in term of HS can be stated in a strong version as follows.

Theorem

Let $V \cup_F W$ a Heegaard splitting of genus *n* for a closed orientable 3-manifold *M* with an associated H-diagram $(V; J_1, \dots, J_n)$. Then *M* is homeomorphic to S^3 if and only if there exists an embedding $i: V \hookrightarrow S^3$ such that $K = \{i(J_1), \dots, i(J_n)\}$ is a CSCS for $W' = \overline{S^3 \setminus i(V)}$, and the manifold obtained by cutting open W'along a CSS in W' spanned by *K* is a handlebody.

We call the 3-manifold W' in the above theorem a quasi-handlebody.

Question: Classify quasi-handlebodies.

A characterization of the 3-sphere: a strong version

By Fox's re-embedding theorem, the previous characterization of the 3-sphere in term of HS can be stated in a strong version as follows.

Theorem

Let $V \cup_F W$ a Heegaard splitting of genus *n* for a closed orientable 3-manifold *M* with an associated H-diagram $(V; J_1, \dots, J_n)$. Then *M* is homeomorphic to S^3 if and only if there exists an embedding $i: V \hookrightarrow S^3$ such that $K = \{i(J_1), \dots, i(J_n)\}$ is a CSCS for $W' = \overline{S^3 \setminus i(V)}$, and the manifold obtained by cutting open W'along a CSS in W' spanned by *K* is a handlebody.

We call the 3-manifold W' in the above theorem a quasi-handlebody.

Question: Classify quasi-handlebodies.

3-submanifolds in S^3 which admit CSCS

The following theorem shows that the equivalent classes of CSCS for such 3-submanifolds of S^3 are unique.

Theorem (Zhao-Lei-Li)

Let \mathcal{J} , \mathcal{K} be two CSCS for M. Then \mathcal{J} and \mathcal{K} are equivalent.

A natural question: Is there a 3-manifold *M* which admits two non-equivalent CSCS?

Theorem (Zhao-Lei)

Suppose that M is a 3-submanifold of S^3 which admits a CSCS \mathcal{J} . Assume that ∂M is compressible in M. Let \mathcal{D} be a maximal collection of pairwise disjoint compression disks for ∂M in M. Then there exists CSCS \mathcal{J}' for M (which is equivalent to \mathcal{J}) such that \mathcal{J}' is disjoint from $\partial \mathcal{D}$.

3-submanifolds in S^3 which admit CSCS

The following theorem shows that the equivalent classes of CSCS for such 3-submanifolds of S^3 are unique.

Theorem (Zhao-Lei-Li)

Let \mathcal{J} , \mathcal{K} be two CSCS for M. Then \mathcal{J} and \mathcal{K} are equivalent.

A natural question: Is there a 3-manifold *M* which admits two non-equivalent CSCS?

Theorem (Zhao-Lei)

Suppose that M is a 3-submanifold of S^3 which admits a CSCS \mathcal{J} . Assume that ∂M is compressible in M. Let \mathcal{D} be a maximal collection of pairwise disjoint compression disks for ∂M in M. Then there exists CSCS \mathcal{J}' for M (which is equivalent to \mathcal{J}) such that \mathcal{J}' is disjoint from $\partial \mathcal{D}$.

3-submanifolds in S^3 which admit CSCS

The following theorem shows that the equivalent classes of CSCS for such 3-submanifolds of S^3 are unique.

Theorem (Zhao-Lei-Li)

Let \mathcal{J} , \mathcal{K} be two CSCS for M. Then \mathcal{J} and \mathcal{K} are equivalent.

A natural question: Is there a 3-manifold *M* which admits two non-equivalent CSCS?

Theorem (Zhao-Lei)

Suppose that M is a 3-submanifold of S^3 which admits a CSCS \mathcal{J} . Assume that ∂M is compressible in M. Let \mathcal{D} be a maximal collection of pairwise disjoint compression disks for ∂M in M. Then there exists CSCS \mathcal{J}' for M (which is equivalent to \mathcal{J}) such that \mathcal{J}' is disjoint from $\partial \mathcal{D}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Zhao-Lei-Li)

Suppose that *M* is a 3-submanifold of S^3 which admits a CSCS \mathcal{J} , and the complement $H = \overline{S^3 \setminus M}$ is a handlebody. Then there exists a CSCS $\{\alpha_1, \dots, \alpha_n\}$ for *M* on ∂M which is equivalent to \mathcal{J} and a CSCS $\{\beta_1, \dots, \beta_n\}$ for *H* (which bounds a complete disk system for *H*) such that $|\alpha_i \cap \beta_i| = 1$ for $1 \le i \le n$, and $|\alpha_i \cap \beta_j| = 0$ for $1 \le i \ne j \le n$.

Corollary

Suppose that M is a 3-submanifold of S^3 which admits a CSCS \mathcal{J} , and the complement $H = \overline{S^3 \setminus M}$ is a handlebody. Then there exists a CSCS $\{\alpha_1, \dots, \alpha_n\}$ for M on ∂M and a collection \mathcal{D} of n-1 pairwise disjoint disks which cuts H into n solid tori T_1, \dots, T_n , such that α_i is a preferred longitude of T_i , $1 \le i \le n$.

Theorem (Zhao-Lei-Li)

Suppose that *M* is a 3-submanifold of S^3 which admits a CSCS \mathcal{J} , and the complement $H = \overline{S^3 \setminus M}$ is a handlebody. Then there exists a CSCS $\{\alpha_1, \dots, \alpha_n\}$ for *M* on ∂M which is equivalent to \mathcal{J} and a CSCS $\{\beta_1, \dots, \beta_n\}$ for *H* (which bounds a complete disk system for *H*) such that $|\alpha_i \cap \beta_i| = 1$ for $1 \le i \le n$, and $|\alpha_i \cap \beta_j| = 0$ for $1 \le i \ne j \le n$.

Corollary

Suppose that M is a 3-submanifold of S^3 which admits a CSCS \mathcal{J} , and the complement $H = \overline{S^3 \setminus M}$ is a handlebody. Then there exists a CSCS $\{\alpha_1, \dots, \alpha_n\}$ for M on ∂M and a collection \mathcal{D} of n-1 pairwise disjoint disks which cuts H into n solid tori T_1, \dots, T_n , such that α_i is a preferred longitude of T_i , $1 \le i \le n$.

→ □ → → □ →

A figure to show

This is just the picture we have seen in the boundary link case, therefore the theorem gives a positive answer to the question mentioned earlier up to eqivalence.

In general, we have

Theorem (Zhao-Lei-Li)

Let *F* be a closed surface of genus $n \ge 1$ in S^3 which splits S^3 into two 3-manifolds M_1 and M_2 , each admits a CSCS. Then there exists a CSCS $\{\alpha_1, \dots, \alpha_n\}$ for M_1 and a CSCS $\{\beta_1, \dots, \beta_n\}$ for M_2 , such that $|\alpha_i \cap \beta_i| = 1$ for $1 \le i \le n$, and $|\alpha_i \cap \beta_j| = 0$ for $1 \le i \ne j \le n$.

Remark: The proofs of these theorems are essentially dependent on the uniqueness theorem for Heegaard splittings of S^3 . It is clear that the above theorem implies Poincaré Conjecture. Thus, it is equivalent to Poincaré Conjecture.

In general, we have

Theorem (Zhao-Lei-Li)

Let *F* be a closed surface of genus $n \ge 1$ in S^3 which splits S^3 into two 3-manifolds M_1 and M_2 , each admits a CSCS. Then there exists a CSCS $\{\alpha_1, \dots, \alpha_n\}$ for M_1 and a CSCS $\{\beta_1, \dots, \beta_n\}$ for M_2 , such that $|\alpha_i \cap \beta_i| = 1$ for $1 \le i \le n$, and $|\alpha_i \cap \beta_j| = 0$ for $1 \le i \ne j \le n$.

Remark: The proofs of these theorems are essentially dependent on the uniqueness theorem for Heegaard splittings of S^3 . It is clear that the above theorem implies Poincaré Conjecture. Thus, it is equivalent to Poincaré Conjecture.

THANKS FOR YOUR ATTENTION!

∃ → < ∃ →</p>

Fengchun Lei (雷逢春) (Joint with Fengling Li and Yan Zhao) 3-submanifolds of S³ which admits CSS