Multi-switches, representations of braids and knot invariants

Valeriy Bardakov
Joint work with Timur Nasybullov

Sobolev Institute of Mathematics, Novosibirsk State University

Novosibirsk
June 17-21, 2019

Switch: Definition

A switch on a set X is a bijection $S: X \times X \rightarrow X \times X$, that satisfies the set theoretic Yang-Baxter equation

$$
(S \times i d)(i d \times S)(S \times i d)=(i d \times S)(S \times i d)(i d \times S)
$$

A switch S is called involutive if $S^{2}=i d$.

If X is not just a set but an algebraic system: quandle, group, module and so on, then the switch S on X is called a quandle switch, a group switch, a module switch and so on.

We will show that if we have a switch we can construct a representation of braid groups and an invariant of knots.

Switch: Examples

Example

Let X be an arbitrary set, and $T(a, b)=(b, a)$ for all $(a, b) \in X^{2}$. The map T is a switch which is called the twist. It is clear that T is involutive.

Example

Let X be a free left module over the ring $\mathbb{Z}\left[t^{ \pm 1}\right]$, then the map $S_{B}(a, b)=(t a+(1-t) b, a)$ for $(a, b) \in X^{2}$ is a switch. It is called the Burau switch.

Example

Let X be a free group. Then the map S_{A} defined by $S_{A}(a, b)=\left(a b a^{-1}, a\right)$ for $(a, b) \in X^{2}$ is a switch which is called the Artin switch on a X. It is easy to check that $S_{A}^{-1}(a, b)=\left(b, b^{-1} a b\right)$.

Recall that a quandle Q is an algebraic system with one binary algebraic operation $(a, b) \mapsto a * b$ which satisfies the following axioms:
(1) $a * a=a$ for all $a \in Q$,
(2) the map $I_{a}: b \mapsto b * a$ is a bijection of Q for all $a \in Q$,
(3) $(a * b) * c=(a * c) *(b * c)$ for all $a, b, c \in Q$.

A quandle Q is called trivial if $a * b=a$ for all $a, b \in Q$, the trivial quandle with n elements is denoted by T_{n}.

Quandles were introduced by S. V. Matveev and D. Joyce in 1982 as an invariant for links.

The following example gives a quandle switch.

Example

Let $(X, *)$ be a quandle. Then the map $S_{Q}(a, b)=(b * a, a)$ for $a, b \in X$ is a quandle switch. The inverse to S_{Q} is given by $S_{Q}^{-1}(a, b)=\left(b, a *^{-1} b\right)$, where $a *^{-1} b=I_{b}^{-1}(a)$.

Braid groups

Braid group B_{n} on $n \geq 2$ strands is generated by $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}$ and is defined by relations

Figure: Geometric interpretation of σ_{i}

There exists a homomorphism

$$
\iota: B_{n} \rightarrow \Sigma_{n}
$$

from the braid group B_{n} onto the symmetric group Σ_{n} on n symbols. This homomorphism maps the generator σ_{i} to the transposition $\tau_{i}=(i, i+1)$ for $i=1,2, \ldots, n-1$. The kernel of this homomorphism is called the pure braid group on n strands and is denoted by P_{n}.

Switches and representations of braid groups

Switches can be used in order to construct representations of braid groups.
Let $S \in \operatorname{Sym}\left(X^{2}\right)$ be a switch on X. For $i=1, \ldots, n-1$ denote by

$$
S_{i}=(i d)^{i-1} \times S \times(i d)^{n-i-1} .
$$

From the relations of B_{n} and the Yang-Baxter equality follows that the map which maps σ_{i} to S_{i} for $i=1, \ldots, n-1$ defines a representation of the braid group B_{n} into the symmetric group $\operatorname{Sym}\left(X^{n}\right)$. If S is involutive, then the map $\tau_{i} \mapsto S_{i}$ defines a representation of the symmetric group Σ_{n} into the group $\operatorname{Sym}\left(X^{n}\right)$.

Switches can also provide representations of braid groups by automorphisms of some algebraic system.

Let X be an algebraic system (for example, module, group, quandle and so on) generated by elements x_{1}, \ldots, x_{n}, and S is a switch on X with $S(a, b)=(L(a, b), R(a, b))$ for $a, b \in X$, then for $i=1, \ldots, n-1$ denote by $S_{i}:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow X$ the map given by

$$
S_{i}\left(x_{k}\right)= \begin{cases}L\left(x_{k}, x_{k+1}\right), & k=i \\ R\left(x_{k}, x_{k+1}\right), & k=i+1 \\ x_{k}, & k \neq i, i+1\end{cases}
$$

If S_{i} induces an automorphism of X, then the map which maps σ_{i} to S_{i} for $i=1, \ldots, n-1$ induces a representation

$$
\varphi_{S}: B_{n} \rightarrow \operatorname{Aut}(X)
$$

Example

If $X=M_{n}$ is the free left module of rank n over the ring $\mathbb{Z}\left[t^{ \pm 1}\right]$, then the Burau switch S_{B} defines the Burau representation $\varphi_{B}: B_{n} \rightarrow \operatorname{Aut}\left(M_{n}\right) \cong \mathrm{GL}_{\mathrm{n}}\left(\mathbb{Z}\left[t^{ \pm 1}\right]\right)$.

Example

If $X=F_{n}$ is the free group of rank n, then the Artin switch S_{A} defines the Artin representation $\varphi_{A}: B_{n} \rightarrow \operatorname{Aut}\left(F_{n}\right)$.

Example

If $X=F Q_{n}$ is the free quandle of rank n, then the quandle switch S_{Q} defines the representation $\varphi_{Q}: B_{n} \rightarrow \operatorname{Aut}\left(F Q_{n}\right)$.

Closure of braid

By Alexander's theorem every link is a closure of some braid.

Figure: 3 -strand braid β and its closure $\widehat{\beta}$

Representations of braids and link invariants

Suppose that L is the closure of some braid $\beta \in B_{n}$, then using representation $\varphi_{S}: B_{n} \rightarrow \operatorname{Aut}(X)$, constructed by a switch S, defined on the algebraic system $X=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, we can define an algebraic system

$$
X_{S}(\beta)=\left\langle x_{1}, x_{2}, \ldots, x_{n} \| \varphi_{S}(\beta)\left(x_{i}\right)=x_{i} i=1,2, \ldots, n\right\rangle
$$

that is a quotient of X.

Switches and invariants of knots

Let X be an algebraic system and S be a switch on X such that

$$
S(a, b)=(L(a, b), R(a, b)), \quad S^{-1}(a, b)=(\bar{L}(a, b), \bar{R}(a, b)) .
$$

For a diagram D_{L} link L we can construct an algebraic system $I_{S}\left(D_{L}\right)$ in the following way:
(1) the set of generators of $I_{S}\left(D_{L}\right)$ is the set of all arcs of D_{L} (strands going from one crossing to another crossing);
(2) the set of relations of $I_{S}\left(D_{L}\right)$ is the set of equalities which can be written from the crossings of D_{L} in the following way.

If $I_{S}\left(D_{L}\right)$ does not change under the Reidemeister moves R1-R3, then we get a link invariant. We will denote it by $I_{S}(L)$.

Examples of knot invariants

Theorem.

If $L=\widehat{\beta}$, then $X_{S}(\beta) \cong I_{S}(L)$.

Example

If X is the free left module then the Burau switch S_{B} defines the Alexander module $I_{B}\left(D_{L}\right)$ that is a quotient of X.

Example

If X is the free group, then the Artin switch S_{A} defines the group $I_{A}\left(D_{L}\right)$ of link L that is the fundamental group of compliment L in 3 -sphere.

Example

If X is the free quandle, then the quandle switch S_{Q} defines the link quandle $I_{Q}\left(D_{L}\right)=Q(L)$.

Theorem [S. V. Matveev, D. Joyce, 1982].

If the knot quandles of two knots are isomorphic, then the (unoriented) knots are equivalent.

The virtual braid group $V B_{n}$ is presented by L. Kauffman (1996).
$V B_{n}$ is generated by the classical braid group $B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right\rangle$ and the symmetric group $\Sigma_{n}=\left\langle\rho_{1}, \ldots, \rho_{n-1}\right\rangle$. Generators $\rho_{i}, i=1, \ldots, n-1$, satisfy the following relations:

$$
\begin{array}{rlrl}
\rho_{i}^{2} & =1 & \text { for } i=1,2, \ldots, n-1, \\
\rho_{i} \rho_{j} & =\rho_{j} \rho_{i} & & \text { for }|i-j| \geq 2, \\
\rho_{i} \rho_{i+1} \rho_{i} & =\rho_{i+1} \rho_{i} \rho_{i+1} & & \text { for } i=1,2 \ldots, n-2 .
\end{array}
$$

Other defining relations of the group $V B_{n}$ are mixed and they are as follows

$$
\begin{aligned}
\sigma_{i} \rho_{j} & =\rho_{j} \sigma_{i} & & \text { for } \quad|i-j| \geq 2 \\
\rho_{i} \rho_{i+1} \sigma_{i} & =\sigma_{i+1} \rho_{i} \rho_{i+1} & & \text { for } \quad i=1,2, \ldots, n-2
\end{aligned}
$$

Geometric interpretation

Figure: Geometric interpretation of ρ_{i}

Let $S, V \in \operatorname{Sym}\left(X^{2}\right)$ be a switch and an involutive switch on X, respectively. We say that the pair (S, V) is a virtual switch on X if the equality

$$
(V \times i d)(i d \times V)(S \times i d)=(i d \times S)(V \times i d)(i d \times V)
$$

holds in X^{3}.

Example

If X is a quandle, then $\left(S_{Q}, T\right)$ is a virtual switch on X.
But if we define an invariant of virtual knots (L. Kauffman), using this virtual switch, then it is not strong invariants. It does not detect non-triviality of the virtual trefoil.

Problems

- Construct a faithful representation

$$
\psi: V B_{n} \longrightarrow \operatorname{Aut}(H),
$$

where H is a "good" algebraic system.

- Define a strong invariant for virtual links.

Extensions of switches

Usually, people consider virtual switches (S, V) on a set X, whee $V=T$ is the twist. So, invariants of virtual links are obtained from such virtual switches ignore the information in virtual crossings.
V. O. Manturov (2002) found a virtual switch (S, V), where V is not the twist. Let Q be a quandle, $T_{1}=\{t\}$ a trivial quandle with one element, and $X=Q * T_{1}$ is the free product of Q and T_{1}. Take $S_{Q}: X^{2} \rightarrow X^{2}$ the quandle switch $S_{Q}(a, b)=(b * a, a)$, and by $V: X^{2} \rightarrow X^{2}$ the involutive switch with $V(a, b)=\left(b *^{-1} t, a * t\right)$ for $a, b \in X$. Then $\left(S_{Q}, V\right)$ is a virtual switch on X. Using this virtual switch Manturov constructed a quandle invariant for virtual links which generalizes the quandle of Kauffman.

Kishino knot

The Kishino knot is a non-trivial knot that is the connected sum of two trivial knots.

Figure: Kishino knot
R. Fenn, M. Jordan-Santana, L. Kauffman (2004) introduced biguandles as a tool for constructing invariants of virtual knots and links. Let S be a switch on X :

$$
S(a, b)=(L(a, b), R(a, b))
$$

For $a, b \in X$ denote by $L(a, b)=b^{a}, R(a, b)=a_{b}$. The Yang-Baxter equation for S implies the following equalities

$$
a^{b c}=a^{c_{b} b^{c}}, \quad a_{b c}=a_{c^{b} b_{c}}, \quad a_{b}^{c_{b} a}=a^{c_{b} c_{a}}
$$

for all $a, b, c \in X$. A switch S is called the biquandle switch if the following conditions hold.
(1) The maps $f^{a}, f_{a}: X \rightarrow X$ given by $f^{a}(x)=x^{a}, f_{a}(x)=x_{a}$ are bijective.
(2) $a^{a^{-1}}=a_{a^{a-1}}$ and $a_{a^{-1}}=a^{a_{a}^{-1}}$ for all $a \in X$.

Example

A quandle switch is a biquandle switch if we put $R(a, b)=a_{b}=a$.

Virtual switch and representation of $V B_{n}$

For a virtual switch (S, V) on X and an integer $n \geq 2$ denote by

$$
S_{i}=(i d)^{i-1} \times S \times(i d)^{n-i-1}, \quad V_{i}=(i d)^{i-1} \times V \times(i d)^{n-i-1}
$$

for $i=1, \ldots, n-1$. From the relations of $V B_{n}$ and definition of virtual switch we see that the maps $\sigma_{i} \mapsto S_{i}, \rho_{i} \mapsto V_{i}$ induce a representation $V B_{n} \rightarrow \operatorname{Sym}\left(X^{n}\right)$.

If X is an algebraic system generated by elements x_{1}, \ldots, x_{n}, and (S, V) is a virtual switch on X with $S(a, b)=(L(a, b), R(a, b)), V(a, b)=(U(a, b), W(a, b))$ for $a, b \in X$, then for $i=1, \ldots, n-1$ denote by $S_{i}, V_{i}:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow X$ the maps given by

$$
S_{i}\left(x_{k}\right)=\left\{\begin{array}{ll}
L\left(x_{k}, x_{k+1}\right), & k=i \\
R\left(x_{k}, x_{k+1}\right), & k=i+1, \\
x_{k}, & k \neq i, i+1,
\end{array} \quad V_{i}\left(x_{k}\right)= \begin{cases}U\left(x_{k}, x_{k+1}\right), & k=i \\
W\left(x_{k}, x_{k+1}\right), & k=i+1 \\
x_{k}, & k \neq i, i+1\end{cases}\right.
$$

If S_{i}, V_{i} induce automorphisms of X, then the maps $\sigma_{i} \mapsto S_{i}, \rho_{i} \rightarrow V_{i}$ induce a representation

$$
\varphi_{S, V}: V B_{n} \rightarrow \operatorname{Aut}(X)
$$

Let $m \geq 1$ be an integer, X_{1}, \ldots, X_{m} non-empty sets, and $X=X_{1} \times \cdots \times X_{m}$. Every switch S on X is called an m-switch, or a multi-switch (if m is not specified). We will think about X^{2} as about $X_{1}^{2} \times \cdots \times X_{m}^{2}$, so, for $A=\left(a_{1}, \ldots, a_{m}\right), B=\left(b_{1}, \ldots, b_{m}\right) \in X$ we write

$$
S(A, B)=S\left(a_{1}, b_{1} ; a_{2}, b_{2} ; \ldots ; a_{m}, b_{m}\right)
$$

If X_{1}, \ldots, X_{m} are not just sets but algebraic systems in some category: groups, modules and so on, then every multi-switch S on X is called a groups multi-switch, a module multi-switch and so on.

The notions of the involutive multi-switch and the virtual multi-switch are the same as for switches changing X by $X_{1} \times \cdots \times X_{m}$.

Example

Every switch is a 1 -switch.

Example (B.-Mikhalchishina-Neshchadim, 2017)

Let G be a group, X_{2} be an abelian group, and $X_{1}=G * X_{2}$ be the free product of G and X_{2}. For a fixed element $x_{0} \in X_{2}$ denote by S the following map from $X_{1}^{2} \times X_{2}^{2}$ to itself

$$
S(a, b ; x, y)=\left(a b^{x} a^{-x_{0} y}, a^{x_{0}} ; y, x\right), \quad a, b \in X_{1}, x, y \in X_{2}
$$

The map S is a group 2-switch on $X=X_{1} \times X_{2}$.

Example (S. Kamada, 2017)

Let G be a group, X_{2}, X_{3} be abelian groups, and $X_{1}=G *\left(X_{2} \times X_{3}\right)$ be the free product of G and $X_{2} \times X_{3}$. The map S given by

$$
S(a, b ; x, y ; p, q)=\left(a b^{x} a^{-q y}, a^{q} ; y, x ; q, p\right)
$$

for $a, b \in X_{1}, x, y \in X_{2}, p, q \in X_{3}$ is a group 3-switch on $X_{1} \times X_{2} \times X_{3}$.

We construct a virtual 2 -switch on a biquandle.

Proposition [B.-Nasybullov, 2019].

Let X_{1} be a biquandle, X_{2} be a trivial subbiquandle of X_{1}, and $S, V: X_{1}^{2} \times X_{2}^{2} \rightarrow X_{1}^{2} \times X_{2}^{2}$ be the maps defined by

$$
S(a, b ; x, y)=\left(b^{a}, a_{b} ; y, x\right), \quad V(a, b ; x, y)=\left(b^{x^{-1}}, a^{y} ; y, x\right)
$$

for $a, b \in X_{1}, x, y \in X_{2}$. If for all $a, b \in X_{1}, x \in X_{2}$ the equalities

$$
b^{a x}=b^{x a^{x}}, \quad\left(a_{b}\right)^{x}=\left(a^{x}\right)_{b^{x}}
$$

hold, then (S, V) is a virtual 2 -switch on $X_{1} \times X_{2}$.

As we noted above, (virtual) switches can be used to construct representations of (virtual) braid groups by automorphisms of algebraic systems.

However, there are representations $V B_{n} \rightarrow \operatorname{Aut}(G)$, where G is some group, which cannot be defined using any virtual switch on G. Take the representation, introduced by B.-Mikhalchishina-Neshchadim

$$
\varphi_{M}: V B_{n} \rightarrow \operatorname{Aut}\left(F_{n, 2 n+1}\right),
$$

where $F_{n, 2 n+1}=F_{n} * \mathbb{Z}^{2 n+1}$ is a free product of the free group $F_{n}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ and the free abelian group $\mathbb{Z}^{2 n+1}=\left\langle u_{1}, \ldots, u_{n}, v_{0}, \ldots, v_{n}\right\rangle$.

This representation acts on the generators of $F_{n, 2 n+1}$ in the following way

$$
\varphi_{M}\left(\sigma_{i}\right):\left\{\begin{array}{l}
x_{i} \mapsto x_{i} x_{i+1}^{u_{i}} x_{i}^{-v_{0} u_{i+1}}, \\
x_{i+1} \mapsto x_{i}^{v_{0}}, \\
u_{i} \mapsto u_{i+1}, \\
u_{i+1} \mapsto u_{i}, \\
v_{i} \mapsto v_{i+1}, \\
v_{i+1} \mapsto v_{i},
\end{array} \quad \varphi_{M}\left(\rho_{i}\right):\left\{\begin{array}{l}
x_{i} \mapsto x_{i+1}^{v_{i}^{-1}} \\
x_{i+1} \mapsto x_{i}^{v_{i+1}} \\
u_{i} \mapsto u_{i+1} \\
u_{i+1} \mapsto u_{i} \\
v_{i} \mapsto v_{i+1} \\
v_{i+1} \mapsto v_{i}
\end{array}\right.\right.
$$

cannot be defined using procedure described above for any virtual switch (S, V) on $F_{n, 2 n+1}$ (hereinafter we write only non-trivial actions on the generators, assuming that all other generators are fixed).

Describe a general construction of a representation $\varphi_{S, V}: V B_{n} \rightarrow \operatorname{Aut}(X)$ by a virtual switches (S, V).
Let $X, X_{0}, X_{1}, \ldots, X_{m}$ be algebraic systems, $X_{0}, X_{1}, \ldots, X_{m} \subseteq X$ such that
(1) $X_{i} \cap X_{j}=\varnothing$ for $i \neq j$,
(2) $X_{0}, X_{1}, \ldots, X_{m}$ together generate X.

Let (S, V) be a virtual multi-switch on $X \times X_{1} \times \cdots \times X_{m}$, where $S=\left(S_{0}, S_{1}, \ldots, S_{m}\right), V=\left(V_{0}, V_{1}, \ldots, V_{m}\right)$ for

$$
\begin{gathered}
S_{0}=\left(L_{0}, R_{0}\right), V=\left(U_{0}, W_{0}\right): X^{2} \times X_{1}^{2} \times X_{2}^{2} \times \cdots \times X_{m}^{2} \rightarrow X^{2} \\
S_{i}=\left(L_{i}, R_{i}\right), V_{i}=\left(U_{i}, W_{i}\right): X_{i}^{2} \rightarrow X_{i}^{2}, \text { for } i=1,2, \ldots, m
\end{gathered}
$$

Automorphic virtual multi-switch (AVMS)

For $a_{0} \in X^{2}, a_{i} \in X_{i}^{2}, i=1,2, \ldots, m$, we write

$$
\begin{aligned}
& S\left(a_{0}, a_{1}, \ldots, a_{m}\right)=\left(S_{0}\left(a_{0}, a_{1}, \ldots, a_{m}\right), S_{1}\left(a_{1}\right), \ldots, S_{m}\left(a_{m}\right)\right), \quad S_{i}=\left(L_{i}, R_{i}\right), \\
& V\left(a_{0}, a_{1}, \ldots, a_{m}\right)=\left(V_{0}\left(a_{0}, a_{1}, \ldots, a_{m}\right), V_{1}\left(a_{1}\right), \ldots, V_{m}\left(a_{m}\right)\right), \quad V_{i}=\left(U_{i}, W_{i}\right) .
\end{aligned}
$$

Let $n \geq 2$ be an integer, and suppose that the system X_{i} is generated by elements $x_{i, 1}, x_{i, 2}, \ldots, x_{i, n}$ for $i=0, \ldots, m$.
For $j=1, \ldots, n-1$ denote by F_{j}, G_{j} the following maps from $X_{0} \cup X_{1} \cup \cdots \cup X_{m}$ to X

$$
F_{j}:\left\{\begin{array}{l}
x_{0, j} \mapsto L_{0}\left(x_{0, j}, x_{0, j+1}, x_{1, j}, x_{1, j+1}, \ldots, x_{m, j}, x_{m, j+1}\right) \\
x_{0, j+1} \mapsto R_{0}\left(x_{0, j}, x_{0, j+1}, x_{1, j}, x_{1, j+1}, \ldots, x_{m, j}, x_{m, j+1}\right) \\
x_{1, j} \mapsto L_{1}\left(x_{1, j}, x_{1, j+1}\right) \\
x_{1, j+1} \mapsto R_{1}\left(x_{1, j}, x_{1, j+1}\right) \\
\quad \vdots \\
x_{m, j} \mapsto L_{m}\left(x_{m, j}, x_{m, j+1}\right) \\
x_{m, j+1} \mapsto R_{m}\left(x_{m, j}, x_{m, j+1}\right)
\end{array}\right.
$$

Automorphic virtual multi-switch (AVMS)

$$
G_{j}:\left\{\begin{array}{l}
x_{0, j} \mapsto U_{0}\left(x_{0, j}, x_{0, j+1}, x_{1, j}, x_{1, j+1}, \ldots, x_{m, j}, x_{m, j+1}\right) \\
x_{0, j+1} \mapsto W_{0}\left(x_{0, j}, x_{0, j+1}, x_{1, j}, x_{1, j+1}, \ldots, x_{m, j}, x_{m, j+1}\right) \\
x_{1, j} \mapsto U_{1}\left(x_{1, j}, x_{1, j+1}\right) \\
x_{1, j+1} \mapsto W_{1}\left(x_{1, j}, x_{1, j+1}\right) \\
\quad \vdots \\
x_{m, j} \mapsto U_{m}\left(x_{m, j}, x_{m, j+1}\right) \\
x_{m, j+1} \mapsto W_{m}\left(x_{m, j}, x_{m, j+1}\right)
\end{array}\right.
$$

If the maps F_{j}, G_{j} induce automorphisms of X, then we say that (S, V) is an automorphic virtual multi-switch (shortly, AVMS) on $X \times X_{1} \times \cdots \times X_{m}$ with respect to the set of generators $\left\{x_{i, j} \mid i=0, \ldots, m, j=1, \ldots, n\right\}$. A virtual multi-switch can be AVMS with respect to one generating set of X, but not AVMS with respect to another generating set of X.

Proposition [B.-Nasybullov, 2019].

Let (S, V) be an AVMS on $X \times X_{1} \times \cdots \times X_{m}$ with respect to the set of generators $\left\{x_{i, j} \mid i=0, \ldots, m, j=1, \ldots, n\right\}$. Then the map

$$
\varphi_{S, V}: V B_{n} \rightarrow \operatorname{Aut}(X)
$$

which is defined on the generators of $V B_{n}$ as

$$
\varphi_{S, V}\left(\sigma_{j}\right)=F_{j}, \quad \varphi_{S, V}\left(\rho_{j}\right)=G_{j}, \quad \text { for } j=1,2, \ldots, n-1
$$

is a representation of $V B_{n}$.

Representation by automorphisms of a quandle

As corollary of the general construction is the following

Theorem [B.-Nasybullov, 2019].

Let $F Q_{n}$ be a free quandle on the set of generators $\left\{x_{1}, \ldots, x_{n}\right\}$ and $T_{n}=\left\{y_{1}, \ldots, y_{n}\right\}$ be a trivial quandle. Then the map φ given by

$$
\varphi\left(\sigma_{i}\right):\left\{\begin{array}{l}
x_{i} \mapsto x_{i+1} * x_{i}, \\
x_{i+1} \mapsto x_{i}, \\
y_{i} \mapsto y_{i+1}, \\
y_{i+1} \mapsto y_{i},
\end{array} \quad \varphi\left(\rho_{i}\right):\left\{\begin{array}{l}
x_{i} \mapsto x_{i+1} *^{-1} y_{i} \\
x_{i+1} \mapsto x_{i} * y_{i+1} \\
y_{i} \mapsto y_{i+1} \\
y_{i+1} \mapsto y_{i}
\end{array}\right.\right.
$$

induces a homomorphism $V B_{n} \rightarrow \operatorname{Aut}\left(F Q_{n} * T_{n}\right)$.

Using a virtual multi-switch (S, V) on X one can construct an algebraic system which is an invariant of virtual links.
To do it we construct an algebraic system $X_{S, V}(\beta)$ for $\beta \in V B_{n}$.

Let X be an algebraic system, and $X^{(2)}<X^{(3)}<\ldots$ be an ascending series of subsystems of X such that $X=\bigcup_{n} X^{(n)}$. For $n \geq 2$ let $X_{0}^{(n)}, X_{1}^{(n)}, \ldots, X_{m}^{(n)}$ be algebraic systems in $X^{(n)}$ such that
(1) $X_{i}^{(n)} \cap X_{j}^{(n)}=\varnothing$ for $i \neq j$,
(2) $X_{0}^{(n)}, X_{1}^{(n)}, \ldots, X_{m}^{(n)}$ together generate $X^{(n)}$,
(8) $X_{i}^{(n)}$ is generated by elements $x_{i, 1}, \ldots, x_{i, n}$ for $i=0, \ldots, m$.

General construction

Let (S, V) be a virtual $(m+1)$-switch on $X \times X_{1} \times \cdots \times X_{m}$, such that the maps S, V fix $X^{(n)} \times X_{1}^{(n)} \times \cdots \times X_{m}^{(n)}$ for all n, and the restriction $\left(S^{(n)}, V^{(n)}\right)$ is an automorphic virtual $(m+1)$-switch on $X^{(n)} \times X_{1}^{(n)} \times \cdots \times X_{m}^{(n)}$ with respect to the set of generators $\left\{x_{i, j} \mid i=0, \ldots, m, j=1, \ldots, n\right\}$. By Proposition for $n=2,3, \ldots$ we have representations

$$
\varphi_{S^{(n)}, V^{(n)}}: V B_{n} \rightarrow \operatorname{Aut}\left(X^{(n)}\right)
$$

Denote by $V B_{\infty}=\bigcup_{n} V B_{n}$, and by $\varphi_{S, V}: V B_{\infty} \rightarrow \operatorname{Aut}(X)$ the homomorphism which is equal to $\varphi_{S^{(n)}, V^{(n)}}$ on $V B_{n}$ (this homomorphism is well defined since $\varphi_{S^{(n)}, V^{(n)}}$ agree with each other). Now we can write $\varphi_{S, V}: V B_{n} \rightarrow \operatorname{Aut}\left(X^{(n)}\right)$ meaning the restriction of $\varphi_{S, V}$ to $V B_{n}$.

For $\beta \in V B_{n}$ put

$$
\begin{gathered}
X_{S, V}(\beta)=\left\langle x_{i, j}, \quad i=0, \ldots, m, j=1, \ldots, n\right| \varphi_{S, V}(\beta)\left(x_{i j}\right)=x_{i j}, \\
i=0, \ldots, m, j=1, \ldots, n\rangle .
\end{gathered}
$$

We will find conditions on (S,V) under which $X_{S, V}(\beta)$ is an invariant of $L=\widehat{\beta}$. To do it we give another definition of $X_{S, V}(\beta)$, using a diagram D_{L} of L.

General construction

Let L has a diagram D_{L}. We call an edge of D_{L} any arc from one crossing of D_{L} (virtual or classical) to another crossing of D_{L} (virtual or classical). Suppose that D_{L} has n edges. Label edges of D_{L} by $(m+1)$-tuples $\left(x_{j}^{0}, x_{j}^{1}, \ldots, x_{j}^{m}\right)$ for $j=1, \ldots, n$, where $x_{j}^{0}, x_{j}^{1}, \ldots, x_{j}^{m}$ are generators of X. By the definition, a subsystem of X generated by all x_{j}^{i} from labels on edges of D_{L} is $X^{(n)}$. Denote by $I_{S, V}\left(D_{L}\right)$ the quotient of $X^{(n)}$ by the relations which can be written from the crossings of D_{L} in the following way:

$$
\begin{array}{rll}
S\left(x_{i}^{0}, x_{j}^{0} ; x_{i}^{1}, x_{j}^{1} ; \ldots ; x_{i}^{m}, x_{j}^{m}\right) & =\left(x_{p}^{0}, x_{q}^{0} ; x_{p}^{1}, x_{q}^{1} ; \ldots ; x_{p}^{m}, x_{q}^{m}\right), & \\
S^{-1}\left(x_{i}^{0}, x_{j}^{0} ; x_{i}^{1}, x_{j}^{1} ; \ldots ; x_{i}^{m}, x_{j}^{m}\right) & =\left(x_{p}^{0}, x_{q}^{0} ; x_{p}^{1}, x_{q}^{1} ; \ldots ; x_{p}^{m}, x_{q}^{m}\right), & \text { negative crossing, } \\
V\left(x_{i}^{0}, x_{j}^{0} ; x_{i}^{1}, x_{j}^{1} ; \ldots ; x_{i}^{m}, x_{j}^{m}\right) & =\left(x_{p}^{0}, x_{q}^{0} ; x_{p}^{1}, x_{q}^{1} ; \ldots ; x_{p}^{m}, x_{q}^{m}\right), & \text { virtual crossing, }
\end{array}
$$

General construction

The labels $\left(x_{i}^{0}, \ldots, x_{i}^{m}\right),\left(x_{j}^{0}, \ldots, x_{j}^{m}\right),\left(x_{p}^{0}, \ldots, x_{p}^{m}\right),\left(x_{q}^{0}, \ldots, x_{q}^{m}\right)$ are as on the following picture.

Note that each crossings gives $2 m+2$ relations, so, $I_{S, V}\left(D_{L}\right)$ is obtained from $X^{(n)}$ adding $2 n(m+1)$ relations.

Theorem [B.-Nasybullov, 2019].

Let X be an algebraic system, and X_{0}, \ldots, X_{m} be subsystems of X which satisfy conditions (1)-(3). If (S, V) is an automorphic virtual $(m+1)$-switch on X such that S, V are biquandles switches on $X \times X_{1} \times \cdots \times X_{m}$, then $I_{S, V}\left(D_{L}\right)$ is an invariant of L.

Application of multi-switch

Using the Artin switch S_{A} we can construct the Artin representation of the braid group B_{n} by automorphisms of the free group $F_{n}=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$:

$$
\varphi_{A}: B_{n} \rightarrow \operatorname{Aut}\left(F_{n}\right)
$$

Take the Fox derivatives and using the abelianization map $F_{n} \rightarrow F_{n}^{a b}=\left\langle t_{1}, t_{2}, \ldots, t_{n}\right\rangle$, we can define a map

$$
B_{n} \rightarrow G L_{n}\left(\mathbb{Z}\left[t_{1}^{ \pm 1}, t_{2}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]\right)
$$

by the rule

$$
\sigma_{i} \rightarrow A_{i}=I_{i-1} \oplus\left(\begin{array}{cc}
1-t_{i+1} & t_{i} \\
1 & 0
\end{array}\right) \oplus I_{n-i-1} \quad i=1,2, \ldots, n-1
$$

To get a representation of B_{n} it is need to have relations

$$
A_{i} A_{i+1} A_{i}=A_{i+1} A_{i} A_{i+1}
$$

It is easy to check that this relation is true if and only if $t_{1}=t_{2}=\ldots=t_{n}$ and we get the Burau representation of $\varphi_{B}: B_{n} \rightarrow \mathrm{GL}_{n}\left(\mathbb{Z}\left[t^{ \pm 1}\right]\right)$.

Question.

Is it possible to construct some representation of B_{n} which depends on n variables?
Consider the free left module M with free basis $e_{1}, e_{2}, \ldots, e_{n}$ over $K=\mathbb{Z}\left[t_{1}^{ \pm 1}, t_{2}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ and take the additive group of this module. Put $X=M$, $X_{1}=K$, then the map

$$
S(a, b ; t, \tau)=((1-\tau) a+t b, a, \tau, t)
$$

is a 2-switch on M.

Define a map

$$
\varphi_{G}: B_{n} \rightarrow \operatorname{Aut}(M)
$$

by action on the generators:

$$
\varphi_{G}\left(\sigma_{i}\right):\left\{\begin{array}{l}
e_{i} \longmapsto\left(1-t_{i+1}\right) e_{i}+t_{i} e_{i+1}, \\
e_{i+1} \longmapsto e_{i}, \\
t_{i} \longmapsto t_{i+1} \\
t_{i+1} \longmapsto t_{i}
\end{array} \quad, \quad i=1,2, \ldots, n-1\right.
$$

Hence, any element $\beta \in B_{n}$ acts on element of $m \in M$ by the rule

$$
\left(\sum_{k=1}^{n} \alpha_{k} e_{k}\right)^{\beta}=\sum_{k=1}^{n} \varphi_{G}(\beta)\left(\alpha_{k}\right) \varphi_{G}(\beta)\left(e_{k}\right)
$$

Note that we consider $\operatorname{Aut}(M)$ as the automorphisms of additive group.

Proposition [B.-Nasybullov, 2019].

The map $\varphi_{G}: B_{n} \rightarrow \operatorname{Aut}(M)$ is a representation of the braid group B_{n}. Its restriction to the pure braid group P_{n} is the Gassner linear representation $P_{n} \rightarrow G L_{n}(K)$.

Discussion

In the paper of S. Barden and R. Fenn (2004) was proved that the Kishino knot is non-trivial using the virtual switch $(S(t), T)$ on a left free module over algebra of quaternions \mathbb{H}, where

$$
S(t)=\left(\begin{array}{cc}
1+i & -t j \\
t^{-1} j & 1+i
\end{array}\right), T=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

L. Kauffman and V. O. Manturov (2005) also proved that the Kishino knot is non-trivial using the virtual switch (S, V), where

$$
S=\left(\begin{array}{cc}
1+i & -j \\
j & 1+i
\end{array}\right), V=\left(\begin{array}{cc}
0 & t \\
t^{-1} & 0
\end{array}\right)
$$

We can formulate

Problem.

Let a virtual switch (X, S, V) defined an invariant of virtual links which distinguishes two virtual links L and L^{\prime}. Is it true that there is a switch (X, \widetilde{S}) such that the invariant that is defined by virtual switch (X, \widetilde{S}, T) distinguishes L and L^{\prime} ?

Thank you!

