Multi-switches, representations of braids and knot invariants

Valeriy Bardakov Joint work with Timur Nasybullov

Sobolev Institute of Mathematics, Novosibirsk State University

> Novosibirsk June 17-21, 2019

V. Bardakov (Sobolev Institute of Math.) Multi-switches, representations of braids

lune 17-21 2019

A switch on a set X is a bijection $S:X\times X\to X\times X,$ that satisfies the set theoretic Yang-Baxter equation

 $(S \times id)(id \times S)(S \times id) = (id \times S)(S \times id)(id \times S).$

A switch S is called involutive if $S^2 = id$.

If X is not just a set but an algebraic system: quandle, group, module and so on, then the switch S on X is called a quandle switch, a group switch, a module switch and so on.

We will show that if we have a switch we can construct a representation of braid groups and an invariant of knots.

(日) (周) (日) (日)

2/45

Example

Let X be an arbitrary set, and T(a,b) = (b,a) for all $(a,b) \in X^2$. The map T is a switch which is called the twist. It is clear that T is involutive.

Example

Let X be a free left module over the ring $\mathbb{Z}[t^{\pm 1}]$, then the map $S_B(a,b) = (ta + (1-t)b, a)$ for $(a,b) \in X^2$ is a switch. It is called the Burau switch.

Example

Let X be a free group. Then the map S_A defined by $S_A(a,b) = (aba^{-1},a)$ for $(a,b) \in X^2$ is a switch which is called the Artin switch on a X. It is easy to check that $S_A^{-1}(a,b) = (b,b^{-1}ab)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Quandle switch

Recall that a quandle Q is an algebraic system with one binary algebraic operation $(a, b) \mapsto a * b$ which satisfies the following axioms:

$$a * a = a \text{ for all } a \in Q,$$

2 the map $I_a: b \mapsto b * a$ is a bijection of Q for all $a \in Q$,

3
$$(a * b) * c = (a * c) * (b * c)$$
 for all $a, b, c \in Q$.

A quandle Q is called trivial if a * b = a for all $a, b \in Q$, the trivial quandle with n elements is denoted by T_n .

Quandles were introduced by S. V. Matveev and D. Joyce in 1982 as an invariant for links.

The following example gives a quandle switch.

Example

Let (X, *) be a quandle. Then the map $S_Q(a, b) = (b * a, a)$ for $a, b \in X$ is a quandle switch. The inverse to S_Q is given by $S_Q^{-1}(a, b) = (b, a *^{-1} b)$, where $a *^{-1} b = I_b^{-1}(a)$.

(日) (四) (日) (日) (日)

Braid groups

Braid group B_n on $n \ge 2$ strands is generated by $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}$ and is defined by relations

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \qquad \text{for } i = 1, 2, \dots, n-2,$$

$$\sigma_i \sigma_j = \sigma_j \sigma_i \qquad \text{for } |i-j| \ge 2.$$

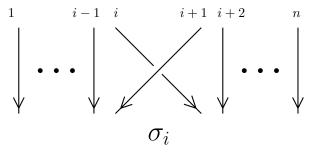


Figure: Geometric interpretation of σ_i

There exists a homomorphism

$$a: B_n \to \Sigma_n$$

1

from the braid group B_n onto the symmetric group Σ_n on n symbols. This homomorphism maps the generator σ_i to the transposition $\tau_i = (i, i+1)$ for $i = 1, 2, \ldots, n-1$. The kernel of this homomorphism is called the pure braid group on n strands and is denoted by P_n .

e 17-21, 2019 6 / 45

• • = •

Switches can be used in order to construct representations of braid groups.

Let $S \in Sym(X^2)$ be a switch on X. For i = 1, ..., n-1 denote by

$$S_i = (id)^{i-1} \times S \times (id)^{n-i-1}.$$

From the relations of B_n and the Yang-Baxter equality follows that the map which maps σ_i to S_i for i = 1, ..., n - 1 defines a representation of the braid group B_n into the symmetric group $\operatorname{Sym}(X^n)$. If S is involutive, then the map $\tau_i \mapsto S_i$ defines a representation of the symmetric group Σ_n into the group $\operatorname{Sym}(X^n)$.

Switches can also provide representations of braid groups by automorphisms of some algebraic system.

Let X be an algebraic system (for example, module, group, quandle and so on) generated by elements x_1, \ldots, x_n , and S is a switch on X with S(a,b) = (L(a,b), R(a,b)) for $a, b \in X$, then for $i = 1, \ldots, n-1$ denote by $S_i : \{x_1, \ldots, x_n\} \to X$ the map given by

$$S_i(x_k) = \begin{cases} L(x_k, x_{k+1}), & k = i, \\ R(x_k, x_{k+1}), & k = i+1, \\ x_k, & k \neq i, i+1 \end{cases}$$

If S_i induces an automorphism of X, then the map which maps σ_i to S_i for $i = 1, \ldots, n-1$ induces a representation

$$\varphi_S: B_n \to \operatorname{Aut}(X).$$

8 / 45

Example

If $X = M_n$ is the free left module of rank *n* over the ring $\mathbb{Z}[t^{\pm 1}]$, then the Burau switch S_B defines the Burau representation $\varphi_B : B_n \to \operatorname{Aut}(M_n) \cong \operatorname{GL}_n(\mathbb{Z}[t^{\pm 1}])$.

Example

If $X = F_n$ is the free group of rank n, then the Artin switch S_A defines the Artin representation $\varphi_A : B_n \to \operatorname{Aut}(F_n)$.

Example

If $X = FQ_n$ is the free quandle of rank n, then the quandle switch S_Q defines the representation $\varphi_Q : B_n \to \operatorname{Aut}(FQ_n)$.

By Alexander's theorem every link is a closure of some braid.



Figure: 3-strand braid β and its closure $\hat{\beta}$

Suppose that L is the closure of some braid $\beta \in B_n$, then using representation $\varphi_S : B_n \to \operatorname{Aut}(X)$, constructed by a switch S, defined on the algebraic system $X = \langle x_1, x_2, \ldots, x_n \rangle$, we can define an algebraic system

$$X_S(\beta) = \langle x_1, x_2, \dots, x_n \mid \mid \varphi_S(\beta)(x_i) = x_i \ i = 1, 2, \dots, n \rangle$$

that is a quotient of X.

A 3 b

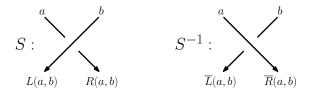
Let X be an algebraic system and S be a switch on X such that

$$S(a,b) = (L(a,b), R(a,b)), \quad S^{-1}(a,b) = (\overline{L}(a,b), \overline{R}(a,b)).$$

For a diagram D_L link L we can construct an algebraic system $I_S(D_L)$ in the following way:

(1) the set of generators of $I_S(D_L)$ is the set of all arcs of D_L (strands going from one crossing to another crossing);

(2) the set of relations of $I_S(D_L)$ is the set of equalities which can be written from the crossings of D_L in the following way.



If $I_S(D_L)$ does not change under the Reidemeister moves R1-R3, then we get a link invariant. We will denote it by $I_S(L)$.

Theorem.

If $L = \widehat{\beta}$, then $X_S(\beta) \cong I_S(L)$.

Example

If X is the free left module then the Burau switch S_B defines the Alexander module $I_B(D_L)$ that is a quotient of X.

Example

If X is the free group, then the Artin switch S_A defines the group $I_A(D_L)$ of link L that is the fundamental group of complement L in 3-sphere.

Example

If X is the free quandle, then the quandle switch S_Q defines the link quandle $I_Q(D_L) = Q(L)$.

▶ < ≣ ▶ ≣ .7-21. 2019 1

A 日 > A 四 > A 三

/ 45

Theorem [S. V. Matveev, D. Joyce, 1982].

If the knot quandles of two knots are isomorphic, then the (unoriented) knots are equivalent.

э

The virtual braid group VB_n is presented by L. Kauffman (1996).

 VB_n is generated by the classical braid group $B_n = \langle \sigma_1, \ldots, \sigma_{n-1} \rangle$ and the symmetric group $\Sigma_n = \langle \rho_1, \ldots, \rho_{n-1} \rangle$. Generators $\rho_i, i = 1, \ldots, n-1$, satisfy the following relations:

$$\begin{split} \rho_i^2 &= 1 & \text{for } i = 1, 2, \dots, n-1, \\ \rho_i \rho_j &= \rho_j \rho_i & \text{for } |i-j| \geq 2, \\ \rho_i \rho_{i+1} \rho_i &= \rho_{i+1} \rho_i \rho_{i+1} & \text{for } i = 1, 2, \dots, n-2. \end{split}$$

Other defining relations of the group VB_n are mixed and they are as follows

$$\sigma_i \rho_j = \rho_j \sigma_i \qquad \text{for } |i-j| \ge 2,$$

$$\rho_i \rho_{i+1} \sigma_i = \sigma_{i+1} \rho_i \rho_{i+1} \qquad \text{for } i = 1, 2, \dots, n-2.$$

Geometric interpretation

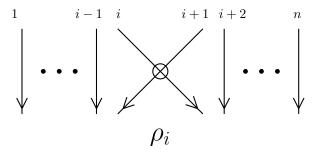


Figure: Geometric interpretation of ρ_i

-

ъ

Let $S, V \in Sym(X^2)$ be a switch and an involutive switch on X, respectively. We say that the pair (S, V) is a virtual switch on X if the equality

$$(V \times id)(id \times V)(S \times id) = (id \times S)(V \times id)(id \times V)$$

holds in X^3 .

Example

If X is a quandle, then (S_Q, T) is a virtual switch on X.

But if we define an invariant of virtual knots (L. Kauffman), using this virtual switch, then it is not strong invariants. It does not detect non-triviality of the virtual trefoil.

• Construct a faithful representation

$$\psi: VB_n \longrightarrow \operatorname{Aut}(H),$$

where H is a "good" algebraic system.

• Define a strong invariant for virtual links.

∃ >

Usually, people consider virtual switches (S, V) on a set X, whee V = T is the twist. So, invariants of virtual links are obtained from such virtual switches ignore the information in virtual crossings.

V. O. Manturov (2002) found a virtual switch (S, V), where V is not the twist. Let Q be a quandle, $T_1 = \{t\}$ a trivial quandle with one element, and $X = Q * T_1$ is the free product of Q and T_1 . Take $S_Q : X^2 \to X^2$ the quandle switch $S_Q(a, b) = (b * a, a)$, and by $V : X^2 \to X^2$ the involutive switch with $V(a, b) = (b *^{-1} t, a * t)$ for $a, b \in X$. Then (S_Q, V) is a virtual switch on X. Using this virtual switch Manturov constructed a quandle invariant for virtual links which generalizes the quandle of Kauffman.

・ロン ・回 と ・ヨン ・ヨン 三日

The Kishino knot is a non-trivial knot that is the connected sum of two trivial knots.

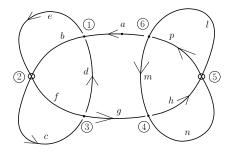


Figure: Kishino knot

June 17-21, 2019

э

æ

Biquandles

R. Fenn, M. Jordan-Santana, L. Kauffman (2004) introduced biguandles as a tool for constructing invariants of virtual knots and links. Let S be a switch on X:

$$S(a,b) = (L(a,b), R(a,b)).$$

For $a, b \in X$ denote by $L(a, b) = b^a$, $R(a, b) = a_b$. The Yang-Baxter equation for S implies the following equalities

$$a^{bc} = a^{c_b b^c}, \qquad a_{bc} = a_{c^b b_c}, \qquad a_b^{c_b a} = a^{c_b c_a}$$

for all $a, b, c \in X$. A switch S is called the biquandle switch if the following conditions hold.

・ロト ・ 同ト ・ ヨト ・ ヨト

Example

A quandle switch is a biquandle switch if we put $R(a, b) = a_b = a$.

For a virtual switch (S, V) on X and an integer $n \ge 2$ denote by

$$S_i = (id)^{i-1} \times S \times (id)^{n-i-1}, \qquad V_i = (id)^{i-1} \times V \times (id)^{n-i-1}$$

for i = 1, ..., n - 1. From the relations of VB_n and definition of virtual switch we see that the maps $\sigma_i \mapsto S_i$, $\rho_i \mapsto V_i$ induce a representation $VB_n \to Sym(X^n)$.

If X is an algebraic system generated by elements x_1, \ldots, x_n , and (S, V) is a virtual switch on X with S(a, b) = (L(a, b), R(a, b)), V(a, b) = (U(a, b), W(a, b)) for $a, b \in X$, then for $i = 1, \ldots, n-1$ denote by $S_i, V_i : \{x_1, \ldots, x_n\} \to X$ the maps given by

$$S_i(x_k) = \begin{cases} L(x_k, x_{k+1}), & k = i, \\ R(x_k, x_{k+1}), & k = i+1, \\ x_k, & k \neq i, i+1, \end{cases} \quad V_i(x_k) = \begin{cases} U(x_k, x_{k+1}), & k = i, \\ W(x_k, x_{k+1}), & k = i+1, \\ x_k, & k \neq i, i+1. \end{cases}$$

If S_i,V_i induce automorphisms of X, then the maps $\sigma_i\mapsto S_i,\,\rho_i\to V_i$ induce a representation

$$\varphi_{S,V}: VB_n \to \operatorname{Aut}(X).$$

lune 17-21 2019

・ロン ・回 と ・ヨン ・ヨン 三日

22 / 45

Let $m \ge 1$ be an integer, X_1, \ldots, X_m non-empty sets, and $X = X_1 \times \cdots \times X_m$. Every switch S on X is called an m-switch, or a multi-switch (if m is not specified). We will think about X^2 as about $X_1^2 \times \cdots \times X_m^2$, so, for $A = (a_1, \ldots, a_m), B = (b_1, \ldots, b_m) \in X$ we write

 $S(A,B) = S(a_1, b_1; a_2, b_2; \dots; a_m, b_m).$

If X_1, \ldots, X_m are not just sets but algebraic systems in some category: groups, modules and so on, then every multi-switch S on X is called a groups multi-switch, a module multi-switch and so on.

The notions of the involutive multi-switch and the virtual multi-switch are the same as for switches changing X by $X_1 \times \cdots \times X_m$.

《曰》 《圖》 《臣》 《臣》 三臣 …

Example

Every switch is a 1-switch.

Example (B.-Mikhalchishina-Neshchadim, 2017)

Let G be a group, X_2 be an abelian group, and $X_1 = G * X_2$ be the free product of G and X_2 . For a fixed element $x_0 \in X_2$ denote by S the following map from $X_1^2 \times X_2^2$ to itself

$$S(a,b;x,y) = (ab^{x}a^{-x_{0}y}, a^{x_{0}}; y, x), \qquad a, b \in X_{1}, \ x, y \in X_{2}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The map S is a group 2-switch on $X = X_1 \times X_2$.

Example (S. Kamada, 2017)

Let G be a group, X_2 , X_3 be abelian groups, and $X_1 = G * (X_2 \times X_3)$ be the free product of G and $X_2 \times X_3$. The map S given by

$$S(a,b;x,y;p,q) = (ab^x a^{-qy}, a^q;y,x;q,p)$$

for $a, b \in X_1, x, y \in X_2, p, q \in X_3$ is a group 3-switch on $X_1 \times X_2 \times X_3$.

We construct a virtual 2-switch on a biquandle.

Proposition [B.-Nasybullov, 2019].

Let X_1 be a biquandle, X_2 be a trivial subbiquandle of X_1 , and $S,V:X_1^2\times X_2^2\to X_1^2\times X_2^2$ be the maps defined by

$$S(a,b;x,y) = (b^{a}, a_{b}; y, x), \qquad V(a,b;x,y) = (b^{x^{-1}}, a^{y}; y, x)$$

for $a, b \in X_1$, $x, y \in X_2$. If for all $a, b \in X_1$, $x \in X_2$ the equalities

$$b^{ax} = b^{xa^x},$$
 $(a_b)^x = (a^x)_{b^x}$

hold, then (S, V) is a virtual 2-switch on $X_1 \times X_2$.

As we noted above, (virtual) switches can be used to construct representations of (virtual) braid groups by automorphisms of algebraic systems.

However, there are representations $VB_n \to \operatorname{Aut}(G)$, where G is some group, which cannot be defined using any virtual switch on G. Take the representation, introduced by B.-Mikhalchishina-Neshchadim

$$\varphi_M: VB_n \to \operatorname{Aut}(F_{n,2n+1}),$$

where $F_{n,2n+1} = F_n * \mathbb{Z}^{2n+1}$ is a free product of the free group $F_n = \langle x_1, \ldots, x_n \rangle$ and the free abelian group $\mathbb{Z}^{2n+1} = \langle u_1, \ldots, u_n, v_0, \ldots, v_n \rangle$.

・ロト ・同ト ・ヨト ・ヨト ・ つくの

This representation acts on the generators of $F_{n,2n+1}$ in the following way

$$\varphi_{M}(\sigma_{i}): \begin{cases} x_{i} \mapsto x_{i}x_{i+1}^{u_{i}}x_{i}^{-v_{0}u_{i+1}}, \\ x_{i+1} \mapsto x_{i}^{v_{0}}, \\ u_{i} \mapsto u_{i+1}, \\ u_{i+1} \mapsto u_{i}, \\ v_{i} \mapsto v_{i+1}, \\ v_{i+1} \mapsto v_{i}, \end{cases} \qquad \qquad \varphi_{M}(\rho_{i}): \begin{cases} x_{i} \mapsto x_{i+1}^{v_{i}^{-1}}, \\ x_{i+1} \mapsto x_{i}^{v_{i+1}}, \\ u_{i} \mapsto u_{i+1}, \\ u_{i+1} \mapsto u_{i}, \\ v_{i} \mapsto v_{i+1}, \\ v_{i+1} \mapsto v_{i}, \end{cases}$$

cannot be defined using procedure described above for any virtual switch (S,V) on $F_{n,2n+1}$ (hereinafter we write only non-trivial actions on the generators, assuming that all other generators are fixed).

Describe a general construction of a representation $\varphi_{S,V}: VB_n \to Aut(X)$ by a virtual switches (S, V).

Let X, X_0, X_1, \ldots, X_m be algebraic systems, $X_0, X_1, \ldots, X_m \subseteq X$ such that

$$I X_i \cap X_j = \emptyset \text{ for } i \neq j,$$

2 X_0, X_1, \ldots, X_m together generate X.

Let (S, V) be a virtual multi-switch on $X \times X_1 \times \cdots \times X_m$, where $S = (S_0, S_1, \ldots, S_m)$, $V = (V_0, V_1, \ldots, V_m)$ for

$$S_0 = (L_0, R_0), V = (U_0, W_0) : X^2 \times X_1^2 \times X_2^2 \times \dots \times X_m^2 \to X^2$$

$$S_i = (L_i, R_i), V_i = (U_i, W_i) : X_i^2 \to X_i^2, \text{ for } i = 1, 2, \dots, m.$$

For $a_0 \in X^2, a_i \in X_i^2$, i = 1, 2, ..., m, we write

$$S(a_0, a_1, \dots, a_m) = (S_0(a_0, a_1, \dots, a_m), S_1(a_1), \dots, S_m(a_m)), \quad S_i = (L_i, R_i),$$

 $V(a_0, a_1, \dots, a_m) = (V_0(a_0, a_1, \dots, a_m), V_1(a_1), \dots, V_m(a_m)), \quad V_i = (U_i, W_i).$

Let $n \ge 2$ be an integer, and suppose that the system X_i is generated by elements $x_{i,1}, x_{i,2}, \ldots, x_{i,n}$ for $i = 0, \ldots, m$. For $j = 1, \ldots, n-1$ denote by F_j , G_j the following maps from $X_0 \cup X_1 \cup \cdots \cup X_m$ to X

$$F_{j}: \begin{cases} x_{0,j} \mapsto L_{0}(x_{0,j}, x_{0,j+1}, x_{1,j}, x_{1,j+1}, \dots, x_{m,j}, x_{m,j+1}), \\ x_{0,j+1} \mapsto R_{0}(x_{0,j}, x_{0,j+1}, x_{1,j}, x_{1,j+1}, \dots, x_{m,j}, x_{m,j+1}), \\ x_{1,j} \mapsto L_{1}(x_{1,j}, x_{1,j+1}), \\ x_{1,j+1} \mapsto R_{1}(x_{1,j}, x_{1,j+1}), \\ \vdots \\ x_{m,j} \mapsto L_{m}(x_{m,j}, x_{m,j+1}), \\ x_{m,j+1} \mapsto R_{m}(x_{m,j}, x_{m,j+1}), \end{cases}$$

(D) (A) (A) (A) (A) (A)

$$G_{j}: \begin{cases} x_{0,j} \mapsto U_{0}(x_{0,j}, x_{0,j+1}, x_{1,j}, x_{1,j+1}, \dots, x_{m,j}, x_{m,j+1}), \\ x_{0,j+1} \mapsto W_{0}(x_{0,j}, x_{0,j+1}, x_{1,j}, x_{1,j+1}, \dots, x_{m,j}, x_{m,j+1}), \\ x_{1,j} \mapsto U_{1}(x_{1,j}, x_{1,j+1}), \\ x_{1,j+1} \mapsto W_{1}(x_{1,j}, x_{1,j+1}), \\ \vdots \\ x_{m,j} \mapsto U_{m}(x_{m,j}, x_{m,j+1}), \\ x_{m,j+1} \mapsto W_{m}(x_{m,j}, x_{m,j+1}). \end{cases}$$

If the maps F_j , G_j induce automorphisms of X, then we say that (S, V) is an automorphic virtual multi-switch (shortly, AVMS) on $X \times X_1 \times \cdots \times X_m$ with respect to the set of generators $\{x_{i,j} \mid i = 0, \dots, m, j = 1, \dots, n\}$. A virtual multi-switch can be AVMS with respect to one generating set of X, but not

A virtual multi-switch can be AVMS with respect to one generating set of X, but not AVMS with respect to another generating set of X.

Proposition [B.-Nasybullov, 2019].

Let (S, V) be an AVMS on $X \times X_1 \times \cdots \times X_m$ with respect to the set of generators $\{x_{i,j} \mid i = 0, \dots, m, j = 1, \dots, n\}$. Then the map

$$\varphi_{S,V}: VB_n \to \operatorname{Aut}(X)$$

which is defined on the generators of VB_n as

 $\varphi_{S,V}(\sigma_j) = F_j, \qquad \varphi_{S,V}(\rho_j) = G_j, \qquad \text{for } j = 1, 2, \dots, n-1,$

(四) (正) (正) (正)

is a representation of VB_n .

As corollary of the general construction is the following

Theorem [B.-Nasybullov, 2019].

Let FQ_n be a free quandle on the set of generators $\{x_1, \ldots, x_n\}$ and $T_n = \{y_1, \ldots, y_n\}$ be a trivial quandle. Then the map φ given by

$$\varphi(\sigma_i) : \begin{cases} x_i \mapsto x_{i+1} * x_i, \\ x_{i+1} \mapsto x_i, \\ y_i \mapsto y_{i+1}, \\ y_{i+1} \mapsto y_i, \end{cases} \qquad \qquad \varphi(\rho_i) : \begin{cases} x_i \mapsto x_{i+1} *^{-1} y_i \\ x_{i+1} \mapsto x_i * y_{i+1}, \\ y_i \mapsto y_{i+1}, \\ y_{i+1} \mapsto y_i, \end{cases}$$

June 17-21, 2019

induces a homomorphism $VB_n \to \operatorname{Aut}(FQ_n * T_n)$.

Using a virtual multi-switch (S, V) on X one can construct an algebraic system which is an invariant of virtual links.

To do it we construct an algebraic system $X_{S,V}(\beta)$ for $\beta \in VB_n$.

A 3 b

3

34 / 45

Let X be an algebraic system, and $X^{(2)} < X^{(3)} < \ldots$ be an ascending series of subsystems of X such that $X = \bigcup_n X^{(n)}$. For $n \ge 2$ let $X_0^{(n)}, X_1^{(n)}, \ldots, X_m^{(n)}$ be algebraic systems in $X^{(n)}$ such that

*周下 * 日下 * 日下 - 日

Let (S, V) be a virtual (m + 1)-switch on $X \times X_1 \times \cdots \times X_m$, such that the maps S, V fix $X^{(n)} \times X_1^{(n)} \times \cdots \times X_m^{(n)}$ for all n, and the restriction $\left(S^{(n)}, V^{(n)}\right)$ is an automorphic virtual (m + 1)-switch on $X^{(n)} \times X_1^{(n)} \times \cdots \times X_m^{(n)}$ with respect to the set of generators $\{x_{i,j} \mid i = 0, \ldots, m, j = 1, \ldots, n\}$. By Proposition for $n = 2, 3, \ldots$ we have representations

$$\varphi_{S^{(n)},V^{(n)}}: VB_n \to \operatorname{Aut}\left(X^{(n)}\right).$$

Denote by $VB_{\infty} = \bigcup_{n} VB_{n}$, and by $\varphi_{S,V} : VB_{\infty} \to \operatorname{Aut}(X)$ the homomorphism which is equal to $\varphi_{S^{(n)},V^{(n)}}$ on VB_{n} (this homomorphism is well defined since $\varphi_{S^{(n)},V^{(n)}}$ agree with each other). Now we can write $\varphi_{S,V} : VB_{n} \to \operatorname{Aut}(X^{(n)})$ meaning the restriction of $\varphi_{S,V}$ to VB_{n} .

(D) (A) (A) (A) (A)

For $\beta \in VB_n$ put

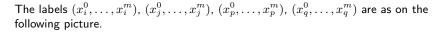
$$X_{S,V}(\beta) = \langle x_{i,j}, i = 0, \dots, m, j = 1, \dots, n \mid \varphi_{S,V}(\beta)(x_{ij}) = x_{ij},$$
$$i = 0, \dots, m, j = 1, \dots, n \rangle.$$

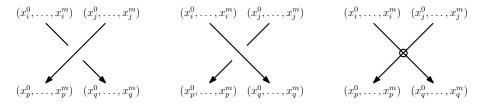
We will find conditions on (S, V) under which $X_{S,V}(\beta)$ is an invariant of $L = \hat{\beta}$. To do it we give another definition of $X_{S,V}(\beta)$, using a diagram D_L of L.

3) 3

Let L has a diagram D_L . We call an edge of D_L any arc from one crossing of D_L (virtual or classical) to another crossing of D_L (virtual or classical). Suppose that D_L has n edges. Label edges of D_L by (m + 1)-tuples $(x_j^0, x_j^1, \ldots, x_j^m)$ for $j = 1, \ldots, n$, where $x_j^0, x_j^1, \ldots, x_j^m$ are generators of X. By the definition, a subsystem of X generated by all x_j^i from labels on edges of D_L is $X^{(n)}$. Denote by $I_{S,V}(D_L)$ the quotient of $X^{(n)}$ by the relations which can be written from the crossings of D_L in the following way:

$$\begin{split} S(x_i^0, x_j^0; x_i^1, x_j^1; \ldots; x_i^m, x_j^m) &= (x_p^0, x_q^0; x_p^1, x_q^1; \ldots; x_p^m, x_q^m), & \text{positive crossing}, \\ S^{-1}(x_i^0, x_j^0; x_i^1, x_j^1; \ldots; x_i^m, x_j^m) &= (x_p^0, x_q^0; x_p^1, x_q^1; \ldots; x_p^m, x_q^m), & \text{negative crossing}, \\ V(x_i^0, x_j^0; x_i^1, x_j^1; \ldots; x_i^m, x_j^m) &= (x_p^0, x_q^0; x_p^1, x_q^1; \ldots; x_p^m, x_q^m), & \text{virtual crossing}, \end{split}$$





э.

A B K A B K

Note that each crossings gives 2m + 2 relations, so, $I_{S,V}(D_L)$ is obtained from $X^{(n)}$ adding 2n(m+1) relations.

Theorem [B.-Nasybullov, 2019].

Let X be an algebraic system, and X_0, \ldots, X_m be subsystems of X which satisfy conditions (1)-(3). If (S, V) is an automorphic virtual (m + 1)-switch on X such that S, V are biquandles switches on $X \times X_1 \times \cdots \times X_m$, then $I_{S,V}(D_L)$ is an invariant of L.

Application of multi-switch

Using the Artin switch S_A we can construct the Artin representation of the braid group B_n by automorphisms of the free group $F_n = \langle x_1, x_2, \ldots, x_n \rangle$:

$$\varphi_A: B_n \to \operatorname{Aut}(F_n).$$

Take the Fox derivatives and using the abelianization map $F_n \to F_n^{ab} = \langle t_1, t_2, \dots, t_n \rangle$, we can define a map

$$B_n \to GL_n(\mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \dots, t_n^{\pm 1}])$$

by the rule

$$\sigma_i \to A_i = I_{i-1} \oplus \begin{pmatrix} 1 - t_{i+1} & t_i \\ 1 & 0 \end{pmatrix} \oplus I_{n-i-1} \quad i = 1, 2, \dots, n-1.$$

To get a representation of B_n it is need to have relations

$$A_i A_{i+1} A_i = A_{i+1} A_i A_{i+1}.$$

It is easy to check that this relation is true if and only if $t_1 = t_2 = \ldots = t_n$ and we get the Burau representation of $\varphi_B : B_n \to \operatorname{GL}_n(\mathbb{Z}[t^{\pm 1}])$.

June 17-21 2019

. / 45

Question.

Is it possible to construct some representation of B_n which depends on n variables?

Consider the free left module M with free basis e_1, e_2, \ldots, e_n over $K = \mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, \ldots, t_n^{\pm 1}]$ and take the additive group of this module. Put X = M, $X_1 = K$, then the map

$$S(a,b;t,\tau) = ((1-\tau)a + tb, a, \tau, t)$$

is a 2-switch on M.

Define a map

$$\varphi_G: B_n \to \operatorname{Aut}(M)$$

by action on the generators:

$$\varphi_G(\sigma_i): \begin{cases} e_i \longmapsto (1-t_{i+1})e_i + t_i e_{i+1}, \\ e_{i+1} \longmapsto e_i, \\ t_i \longmapsto t_{i+1}, \\ t_{i+1} \longmapsto t_i, \end{cases}, \quad i = 1, 2, \dots, n-1.$$

Hence, any element $\beta \in B_n$ acts on element of $m \in M$ by the rule

$$\left(\sum_{k=1}^{n} \alpha_k e_k\right)^{\beta} = \sum_{k=1}^{n} \varphi_G(\beta)(\alpha_k) \, \varphi_G(\beta)(e_k).$$

Note that we consider Aut(M) as the automorphisms of additive group.

Proposition [B.-Nasybullov, 2019].

The map $\varphi_G: B_n \to \operatorname{Aut}(M)$ is a representation of the braid group B_n . Its restriction to the pure braid group P_n is the Gassner linear representation $P_n \to GL_n(K)$.

June 17-21, 2019

Discussion

In the paper of S. Barden and R. Fenn (2004) was proved that the Kishino knot is non-trivial using the virtual switch (S(t), T) on a left free module over algebra of quaternions \mathbb{H} , where

$$S(t) = \begin{pmatrix} 1+i & -tj \\ t^{-1}j & 1+i \end{pmatrix}, T = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

L. Kauffman and V. O. Manturov (2005) also proved that the Kishino knot is non-trivial using the virtual switch (S,V), where

$$S = \left(\begin{array}{cc} 1+i & -j \\ j & 1+i \end{array} \right), V = \left(\begin{array}{cc} 0 & t \\ t^{-1} & 0 \end{array} \right).$$

We can formulate

Problem.

Let a virtual switch (X, S, V) defined an invariant of virtual links which distinguishes two virtual links L and L'. Is it true that there is a switch (X, \tilde{S}) such that the invariant that is defined by virtual switch (X, \tilde{S}, T) distinguishes L and L'?

e 17-21, 2019

45 /

Thank you!

June 17-21, 2019

・ロト ・四ト ・ヨト ・ヨト

æ